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Chapter 1 Literature Review

1.1 Introduction

Generative frameworks such as Generative Adversarial Networks (GANSs) |Goodfellow et al.| (2014 and Variational
Autoencoders (VAEs) Kingma and Welling| (2013) were foundational in data synthesis. More recently, diffusion
models have become the state-of-the-art for 2D image generation, delivering superior photorealism, diversity, and
training stability rooted in a solid probabilistic framework Ho et al.| (2020a); |Croitoru et al. (2023). However,
extending these 2D successes to 3D content generation is not straightforward. The inherent complexity of 3D
data introduces distinct challenges that prevent the direct application of 2D methods [Wang et al.| (2025). To
successfully apply diffusion models in the 3D domain, researchers must make critical design choices regarding two
key aspects: the 3D data representation and the diffusion methodology. Consequently, 3D diffusion modeling has
evolved into a distinct research area with its own unique problems and solutions. The demand for high-quality
3D content is surging across industries like gaming, film, architecture, virtual reality (VR), and scientific
visualization. Traditional 3D modeling workflows are resource-intensive, demanding significant manual labor,
specialized skills, and computational power. This production bottleneck underscores the need for automated,
efficient, and accessible methods for 3D content creation, a gap that generative models are poised to fill.

1.2 Fundamentals of Diffusion Methods

Denoising Diffusion Probabilistic Models (DDPMs)

Denoising Diffusion Probabilistic Models (DDPMs) are latent variable models that consist of two primary
processes Ho et al.| (2020b). The forward process systematically introduces Gaussian noise to data xzg over T
discrete timesteps. This is governed by a fixed Markov chain, gradually transforming the data into an isotropic
Gaussian distribution x. The transition at each step ¢ is defined by a fixed variance schedule 5;:

q(ze|ve—1) = N(ze; V1 = Brae—1, Bel) (1.2.1)

The reverse process learns to restore the original data from noise. It begins with a standard Gaussian
distribution p(zr) = N (x1;0,I) and iteratively denoises the data using a neural network, pg, which is trained
to approximate the true posterior transitions. Each reverse step is a learned Gaussian transition:

po(xi_1|xs) = N (w15 pg(e, t), Lo (x4, 1)) (1.2.2)

In practice, the variance 3g(xz4,t) is often fixed to a time-dependent constant, and the network is trained to
predict the noise component € added at the corresponding forward step. This is accomplished by minimizing a
simplified objective function derived from the variational lower bound:

Bt zo.ellle — es(vVarmo + V1 — aye, t)]?] (1.2.3)

where a; = szl(l — Bs). This objective effectively trains the model €4 to predict and remove the noise from a
given noisy sample ;.

Stochastic Differential Equation (SDE) Formulation

Diffusion models can also be generalized to a continuous-time framework using stochastic differential equations
(SDEs), a perspective also known as score-based generative modeling [Po et al.| (2023). In this view, the forward
process that corrupts data with noise is described by the SDE:

dx; = —%ﬂ(t)xtdt + VB dw: (1.2.4)
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Chapter 1. Literature Review 1.3. 3D Diffusion Approaches

where wy is a standard Wiener process and 3(t) is a continuous noise schedule. The data generation process is
defined by a corresponding reverse-time SDE, which transforms noise back into data:

dx, = (—§ﬁ<t>xt — (1) Vi, log qt<xt>) dt -+ /FlD)dw, (1.2.5)

Solving this reverse SDE requires estimating the score function, Vy, log g;(x;), which is the gradient of the
log-density of the noisy data at time ¢. A time-dependent neural network is trained to approximate this score
function.

Score Distillation Sampling (SDS) for 3D Generation

Score Distillation Sampling (SDS) is a pivotal technique that leverages pre-trained 2D text-to-image diffusion
models to optimize 3D representations, such as Neural Radiance Fields (NeRFs) [Poole et al.| (2023). The core
idea is to treat the 2D diffusion model as a powerful prior, providing gradients to update the parameters 6 of a
differentiable 3D generator g. The process starts by rendering an image x = ¢g(6) from a random viewpoint. A
noisy version x; is created by adding noise € to the image. The pre-trained diffusion model’s noise-prediction
network, €4, then estimates the added noise, conditioned on a text prompt y. The SDS loss gradient updates the
3D model’s parameters 6 to make its renderings more plausible under the 2D model’s learned distribution:

VoLsps(®,g(0)) =Epe |w(t) (ep(Varmo + V1 — aue;y,t) —€) ox (1.2.6)

00
Here, w(t) is a weighting function dependent on timestep t. The key innovation of SDS is its ability to distill
knowledge from powerful 2D models for 3D generation without requiring large-scale, paired text-3D datasets.

Variational Score Distillation (VSD)

Variational Score Distillation (VSD) was introduced as a more principled successor to SDS [Wang et al.| (2023]).
While SDS optimizes a single 3D asset, VSD frames the problem as aligning a distribution of 3D scenes with
the 2D diffusion prior. This variational inference approach helps mitigate common SDS artifacts, such as
over-saturation, over-smoothing, and a lack of fine detail. The VSD gradient calculation differs from SDS. Instead
of comparing the model’s noise prediction to the ground-truth noise jspan class="math-inline”
epsilonj/spany, it computes the difference between two noise predictions under different conditions, leading to a
more stable gradient. The final loss function is:

or

e (1.2.7)

VoLysp(d,9(0) = Eiae |w(t) (€p(e;y,1) — €p(t; yes 1))
where the gradient is derived from the difference between the noise predicted with a specific text prompt jspan
class="math-inline” {yj/span; and a more general prompt jspan class="math-inline”;y_cj/span;. This method
has been shown to enhance the diversity and fidelity of generated 3D content.

1.3 3D Diffusion Approaches

Diffusion models for 3D generation can be classified based on the domain where the diffusion occurs and the use
of pre-trained models. A prominent survey by Wang et al. [Wang et al.|(2025]) categorizes methods into three
groups: 2D space diffusion with pre-trained models, 2D space diffusion without pre-trained models, and 3D space
diffusion. This framework helps organize the diverse strategies in the field. The primary division in 3D diffusion
methods is between ”2D-lifting” (2D-space diffusion) and ”3D-native” (3D-space diffusion) approaches. This
dichotomy reflects a fundamental trade-off. 2D-lifting methods capitalize on powerful, web-scale pre-trained 2D
diffusion models, often achieving superior texture, detail, and generalization. However, they inherently struggle
to maintain 3D geometric consistency, leading to artifacts like the Janus problem (an object with multiple fronts).
In contrast, 3D-native approaches directly model 3D data distributions, ensuring better geometric integrity.
Yet, they are hampered by the scarcity of high-quality 3D data, which can limit the detail and diversity of the
generated assets.

2D-Space Diffusion (2D-Lifting): Generating 3D from 2D Priors

These methods optimize a 3D representation by aligning its 2D renderings with distributions learned by 2D
diffusion models. Initially, ”2D-lifting” referred mainly to techniques like Score Distillation Sampling (SDS),
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Chapter 1. Literature Review 1.4. Conditional 3D Generation Methods

which uses a fixed, pre-trained 2D model to optimize a single 3D scene [Poole et al.| (2023)). More recent approaches
have refined this paradigm by fine-tuning or training 2D diffusion models to be explicitly ”3D-aware” [Shi et al.
(2023)); [Lin et al.[(2025)). These models can generate consistent multi-view images or image-plus-normal map
bundles, directly addressing the key weakness of 3D inconsistency. Some work uses existing text-to-image
diffusion models as powerful priors, most commonly through SDS and its variants.

Another approch is training Novel 2D Diffusion Models for 3D-Aware. This involves training or fine-tuning 2D
diffusion models to generate 2D representations that are inherently 3D-aware, such as consistent multi-view
images.

e Advantages: Can explicitly learn 3D consistency from multi-view datasets. Inference is often much faster
than per-scene optimization.

e Challenges: Requires large datasets of multi-view images derived from 3D assets. A separate reconstruction
step is often needed to produce a final 3D model.

e Examples: MVDream generates consistent multi-view images from text prompts [Shi et al.| (2023).
Kiss3DGen outputs a 73D Bundle Image” containing multi-view RGB images and normal maps for
reconstruction |Lin et al.| (2025).

3D-Space Diffusion (3D-Native): Direct Diffusion on 3D Data

In contrast to 2D-lifting, these methods apply the diffusion process directly to 3D representations like voxels or
point clouds. They fundamentally require 3D datasets for training.

e Advantages: Inherently strong multi-view consistency and direct control over geometry. Generation is
typically fast once the model is trained.

e Challenges: Severely limited by the scarcity and scale of high-quality 3D training data. The high
dimensionality of 3D data also imposes significant computational costs.

e Examples: Early works include Point-E [Nichol et al.| (2022]) and Shap-E [Jun and Nichol| (2023). More
recent methods apply diffusion to latent codes from 3D autoencoders [Zeng et al.| (2022)); [Nam et al.| (2022]).

1.4 Conditional 3D Generation Methods

Conditional 3D generation provides explicit user control over the synthesis process by guiding it with specific
inputs, such as text, images, or sketches. This paradigm moves beyond random sampling towards targeted
content creation that aligns with a user’s intent. The core technical challenge across all modalities is to effectively
translate the conditioning signal into a coherent and detailed three-dimensional structure. This section provides
a detailed algorithmic description of the primary methods developed for this purpose, categorized by the input
condition.

Text-to-3D Synthesis

Translating natural language into 3D assets is a primary goal of conditional generation. The approaches can be
broadly divided by whether they operate directly in 3D space or leverage powerful, pre-existing 2D models.

Optimization-Based Methods: Score Distillation Sampling

The most prominent and highest-fidelity method for text-to-3D generation is an optimization process reliant on
Score Distillation Sampling (SDS) [Poole et al.| (2023)). This algorithm does not train a new generative model
but rather optimizes a single 3D scene representation on a per-prompt basis. The process begins by initializing
a differentiable 3D representation, such as a Neural Radiance Field (NeRF) [Mildenhall et al.| (2020]) or, more
recently, a set of 3D Gaussians Tang et al.| (2023)). In each optimization step, a virtual camera is placed at a
randomly sampled viewpoint, and a differentiable renderer produces the corresponding 2D image. This rendered
image is then treated as a clean sample and is perturbed with a random amount of Gaussian noise, simulating a
single step of a forward diffusion process. The key insight is to then use a large, pre-trained 2D text-to-image
diffusion model Rombach et al.| (2022) as a powerful, non-parametric prior. This 2D model, guided by the user’s
text prompt via its cross-attention layers, predicts the noise component from the noisy rendered image. The SDS
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Table 1.1: Comparative Analysis of 2D-Lifting vs. 3D-Native Diffusion Models

Feature 2D-Lifting (Pre- | 2D-Lifting 3D-Native Diffusion
trained 2D Priors) (Novel/Finetuned
3D-Aware 2D Models)
Primary Data | Vast 2D image-text | Multi-view 2D renderings | 3D datasets (point clouds,
Source datasets (indirectly) from 3D assets meshes, voxels, etc.)

3D Consistency

Prone to inconsistencies
(e.g., Janus problem)

Improved consistency due
to explicit multi-view
training

Inherently better geomet-
ric consistency

verse styles/objects

diversity of MV training
data

Detail/Texture Often high due to powerful | Can achieve good detail, | Can struggle with high-

Quality 2D priors dependent on 2D model ca- | frequency details due to
pacity 3D data limits

Generalization Good generalization to di- | Generalization depends on | Limited by diversity of 3D

training data

Training Cost

No training of core 2D dif-
fusion model needed

Requires  training/fine-
tuning of 2D diffusion
model on MV data

Expensive training due to
high-dimensional 3D data

Inference Speed

Often slow per-scene opti-
mization (SDS)

Can be fast (feed-forward
2D generation + recon-

Can be fast once trained
(feed-forward 3D genera-

struction) tion)
Susceptibility to | High Reduced, as model is | Low, as 3D structure is di-
Janus Problem trained for multi-view con- | rectly modeled

sistency

Key Examples

SDS (e.g., DreamFusion
Poole et al.|(2023)))

Multi-view diffusion (e.g.,
MVDream [Shi et al
(2023)), Bundle generation

Direct diffusion on 3D reps
(e.g., Point-E [Nichol et al.
(2022))

(e.g., Kiss3DGen 7?)

loss is calculated from the difference between the predicted noise and the actual noise added. Crucially, because
the entire rendering pipeline is differentiable, the gradient from this loss can be backpropagated through the
renderer to update the parameters of the 3D representation. By repeating this process for thousands of iterations
from a wide distribution of camera poses, the 3D representation is gradually sculpted until its renderings from all
angles are consistent with the text prompt. This mechanism was further refined by Variational Score Distillation
(VSD), which re-frames the gradient computation to align distributions rather than single samples, leading to
improved diversity and photorealism [Wang et al.| (2023).

Feed-Forward Methods: Decoupling Generation and Reconstruction

To overcome the significant time cost of per-scene optimization, feed-forward methods aim to generate 3D assets
in a single pass. This is typically achieved by decoupling the problem into two stages: first generating a 2D or
2.5D representation, and then reconstructing the 3D model from it. One dominant approach involves training a
specialized multi-view diffusion model, such as MVDream |Shi et al.| (2023)), on large-scale datasets of rendered
3D objects Deitke et al.| (2023). This model is architected to accept a text prompt and directly output a set of
geometrically consistent multi-view images. These images can then be processed by a separate reconstruction
module to produce the final 3D asset. An even faster pipeline has emerged that leverages pre-trained Large
Reconstruction Models (LRMs) Hong et al, (2023). In this workflow, a standard text-to-image model generates
just one or a few views of the target object. These views are then fed into the LRM, which is a highly optimized
model trained specifically to infer a complete 3D shape from sparse image inputs. This design, exemplified by
systems like One-2-3-45 |Liu et al.| (2023a)), dramatically accelerates the text-to-3D process, enabling near-real-time
creation.

3D-Native Generative Models
In contrast to 2D-lifting, 3D-native approaches apply a conditional diffusion process directly to a 3D data

representation. The mechanism for incorporating the text condition is analogous to that in 2D models. The text
prompt is encoded into a semantic embedding using a text encoder like CLIP. This embedding is then injected
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Chapter 1. Literature Review 1.4. Conditional 3D Generation Methods

into the architecture of a 3D denoising network (e.g., a 3D U-Net) at each timestep, typically via cross-attention
layers. This allows the text to directly guide the denoising process as it refines a noisy 3D representation—such
as a voxel grid, a point cloud, or the latent code of a 3D autoencoder—into a clean, final shape. Models like
Diffusion-SDF |Li et al.| (2023]) apply this to generate Signed Distance Fields, while LION |Zeng et al.| (2022)
operates within the compressed latent space of a point cloud VAE, showcasing how text can directly control the
generation of diverse 3D geometric structures.

Single Image-to-3D Synthesis
Novel View Synthesis with 2D Diffusion Priors

The dominant methodology for image-to-3D generation involves a two-stage process of view synthesis followed
by reconstruction. The process begins by encoding the input image into a compact feature vector using a vision
encoder. This feature vector acts as the primary condition for a specialized novel view synthesis diffusion model,
such as that in Zero-1-to-3 |[Liu et al.|(2023b)). This model is uniquely designed to also accept a target camera pose
(as a relative transformation from the input view) as a secondary condition. By repeatedly invoking the model
with the same image condition but a different target pose, a full set of multi-view images capturing the object
from all sides can be generated. This collection of synthesized views is then passed to a reconstruction algorithm.
While early methods used NeRF-fitting for high-quality results, the process was slow. More recent approaches,
like DreamGaussian [Tang et al.| (2023), have adopted highly efficient representations like 3D Gaussian Splatting
Kerbl et al.| (2023) for the reconstruction stage, enabling rapid 3D model creation. This modular framework
effectively leverages the generative power of 2D models for the geometrically complex task of view hallucination.

Direct Reconstruction with Large Reconstruction Models

A more recent and streamlined approach bypasses the intermediate step of generating multiple views. Instead,
it utilizes a Large Reconstruction Model (LRM) Hong et al. (2023)‘. An LRM is a transformer-based model
specifically trained to take one or more images as input and directly output the parameters for a 3D representation,
such as a triplane feature field. When applied to the image-to-3D task, the workflow is maximally efficient: the
single input image is passed through the LRM in one forward pass to produce the 3D model. This eliminates
the need for iterative optimization or generating dozens of intermediate images, representing the fastest path
from a single image to a 3D asset.

Generation from Other Modalities

Sketch-Based Modeling

Sketches offer an intuitive medium for expressing 3D concepts. In a typical sketch-to-3D pipeline, the input
sketch is first processed as a sparse image and fed into an encoder to extract its structural features. This
feature representation then conditions a generative model that synthesizes the final 3D shape |Chen et al.| (2023).
This process treats the sketch as a strong geometric guide. In an editing context, a sketch can be used to
define a target deformation. In a system like SKED Mikaeili et al.| (2023]), the user’s strokes are interpreted
as geometric constraints that guide the non-rigid deformation of an existing 3D mesh, offering a direct and
interactive modeling experience.

Layout-Conditioned Scene Generation

To generate complex, multi-object scenes, controlling the spatial layout is paramount. Layout-conditioned
systems like CC3D |Bahmani et al.| (2023) achieve this through a hierarchical generation process. The user
first defines an abstract scene layout, typically composed of labeled 3D bounding boxes. The model then
performs a global diffusion process on a feature grid representing the entire scene volume, conditioned on
this layout. This step establishes a shared context and ensures that inter-object relationships are coherent.
Subsequently, the algorithm processes each bounding box individually. It crops the local features from the global
grid corresponding to a specific box and uses them to condition a second, object-level generative model. This
local model is responsible for synthesizing the detailed geometry of the individual object within its bounding
box. This coarse-to-fine strategy ensures that generated scenes adhere to the specified global structure while
populating it with contextually appropriate objects.



Chapter 2 Baseline Experiments

For baseline experiments, the early work of |Luo and Hul (2021)) was selected due to computational considerations.

2.1 Problem Formulation

The core idea of this work is to frame 3D point cloud generation as a probabilistic modeling task inspired by
non-equilibrium thermodynamics. A point cloud, X(© = {xEO)}iI\Ll, is treated as a collection of particles that
diffuse over time from an original, structured distribution to a simple noise distribution |Luo and Hu (2021)). The
generation task is therefore to learn the reverse diffusion process.

2.2 Pipeline

To generate a new point cloud, a latent code z is first sampled from the prior distribution p(z). Then, points are
sampled from a standard normal distribution, X (7) ~ A/ (0,1), and are iteratively passed through the learned
reverse Markov chain for t = T,7 — 1, ..., 1 to produce the final point cloud X (©).

Baseline (Unconditioned Generation)
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Figure 2.1

2.3 Experiments

The following table summarizes the quantitative results across 4 categories from the ShapeNet dataset. The
metrics used for evaluation are 1-Nearest Neighbor Accuracy (1-NNA), Coverage (COV), Jensen-Shannon
Divergence (JSD), and Minimum Matching Distance (MMD). For 1-NNA and COV, Chamfer Distance (CD) is
used as the distance metric.



Chapter 2. Baseline Experiments 2.3. Experiments

Category Step[x10%] 1-NNA-CD(}) COV-CD (1) JSD (}) [x1072] MMD-CD ({) [x1073]

10 79.3% 44.4% 5.10 3.52
airplane 20 78.2% 49.6% 4.16 3.47
30 74.1% 44.4% 4.81 3.58
10 10.0% 80.0% 23.95 21.4
bag 20 20.0% 80.0% 27.75 25.2
30 30.0% 80.0% 23.92 24.9
10 85.0% 30.4% 3.73 4.78
car 20 83.3% 31.1% 3.57 4.62
30 81.5% 31.5% 3.50 4.54
10 66.6% 47.5% 1.97 13.7
table 20 64.3% 43.7% 2.31 12.1
30 63.4% 48.3% 2.06 12.9

Table 2.1: Quantitative results of the baseline model on four ShapeNet categories.

Unconditioned Generation
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Figure 2.2



Chapter 3 Image-conditioned Point Cloud
Generation

3.1 Problem Formulation

Building upon the foundation of unconditional generation, I further explore the task of generating a corresponding
3D point cloud conditioned on a single 2D image. The objective is to recover the 3D shape, represented as a
point cloud X, from a given image I. We formalize this task as a conditional probabilistic generative model.
My approach extends from the baseline unconditional diffusion model. In the original model, the reverse diffusion
process (i.e., the generation process) is guided by a latent variable z, with its probabilistic form being pg(X (9|z).
For the current conditional generation task, this latent variable z is replaced by a deterministic feature vector cy,
which is extracted from the input image I.

Consequently, the conditional reverse diffusion process can be expressed as:
T
po(XDlep) = p(x™) HpQ(X(til)LX(t),CI)
t=1

Here, X(T) is a noise sample drawn from a standard normal distribution, and ¢; = E4(I) is the condition vector
extracted from image I by an image encoder Ey. The transition kernel of the reverse process is correspondingly
conditioned at each step. Its mean is predicted by a neural network pg that takes the noisy point cloud, the
timestep, and the image condition as input:

p@(x(t_l) |x(t)u CI) = N(x(t_l) |,U9(l’(t)7 t? CI)7 ﬂt‘[)

The training objective is to optimize the network parameters # and the image encoder parameters ¢, enabling the
model to accurately guide the progressive denoising of the point cloud based on the image features cy, ultimately
recovering a 3D shape that matches the image content.

3.2 Pipeline

To achieve generation from a 2D image to a 3D point cloud, I designed a two-stage training pipeline. The core
idea is to first learn an effective image representation and then leverage this representation to guide the training
of the conditional diffusion model. Stage 1: Image Encoder Pre-training The goal of this stage is to train
an image encoder Ey capable of compressing an input 2D image I into an information-rich, low-dimensional
feature vector c;. We employ an auto-encoder architecture, where an encoder extracts features, and a decoder
reconstructs the original image from this feature vector. By minimizing the reconstruction loss, I compel the
encoder to learn the key geometric and semantic information of the image. This process is unsupervised and
uses only the rendered images from the ShapeNet dataset. Stage 2: Conditional Diffusion Model Training
In the second stage, we train the conditional diffusion model on pairs of (Image I, 3D Point Cloud X (O)). The
weights of the pre-trained image encoder E are loaded and serve as the conditioning module. During training,
for each sample, we first extract the image condition via ¢; = E4(I). This condition vector ¢y is then fed into
the diffusion model’s denoising network s, along with the noisy point cloud z(*) and the timestep ¢.

Notably, the weights of the pre-trained image encoder also participate in gradient backpropagation and optimiza-
tion during this stage. This is done to achieve an alignment between the 2D image feature space and the 3D
geometry feature space, ensuring that the features extracted by the encoder are not only effective for image
reconstruction but also for guiding 3D shape generation.

The entire pipeline is illustrated in the figure below.
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Figure 3.1: A schematic of the two-stage training pipeline for the conditional generation model.

3.3 Training

I conducted model training on the ShapeNet with rendering dataset, which provides a large collection of 3D
models and their corresponding multi-view renderings, serving as the source for our (image, point cloud) data
pairs. The training process strictly followed the two-stage procedure described previously. For training the
conditional diffusion model, we used the Adam optimizer with an appropriate learning rate and batch size. The
training loss curve is shown in the figure below, where the loss steadily decreases and eventually converges,
indicating that our model was trained effectively.

Unconditioned Generation Loss
train/grad_norm train/loss_recons
tag: train/grad_norm tag: train/loss_recons
06
0.59
0.58
0.57

0.56

0 10k : 20k 0]3 40k S0k

train/grad_norm train/loss
tag: train/grad_norm tag: train/loss

0 5k 10k 15k 20k 25k 30k 35k 40k

Figure 3.2: The loss curve during the training of the conditional diffusion model.

The figure below provides a visualization of the reverse diffusion process during training, starting from random
noise (left) and progressively generating a complete shape (right).
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(b) Generation process for the some other categories.

Figure 3.3: Visualization of the reverse denoising process from noise to the target shape.

3.4 Results

I performed a qualitative evaluation of the trained model’s generation capabilities across several categories.
Given a rendered image from the test set (unseen during training), the model can generate a point cloud of the
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corresponding category. The model successfully recovers plausible 3D shapes from the input 2D images. For
objects with relatively rigid structures like airplanes and cars, the model effectively captures the overall silhouette
and major components, such as wings, fuselage, and car bodies. For objects with more slender components, such
as chairs and tables, the generated results are also largely correct, can distinguish some of structures like chair
backs and legs. These results provide an initial validation of the effectiveness of my proposed image-conditioned
point cloud generation method.
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(a) Airplane

(b) Chair

(c) Table

(d) Car
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Figure 3.4:
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