
3D Vision Computing
Notes Taking: Alex

Contact: wang-zx23@mails.tsinghua.edu.cn

Instructor: Li Yi

Main Reference: Li Yi 's 3DV lecture & Hao Su's ML-meets-geometry lecture

3D Vision Computing
Introduction
Chapter1 Geometry: Curves&&Surfaces [Lecture 1]

1.1 Curves
1.1.1 Parameterization

Definition
Application

1.1.2 2D

Frenet Equation
 Curve Theorem

1.1.3 3D
Osculating Plane
Curvature & Torsion
Frenet Frame

 Curve Theorem
1.1.4 Geometry Meaning

1.2 Surface
1.2.1 Surface Parametrization

Saddle Example
1.2.2 Differentiable Manifold

Saddle Example-Continue
1.2.3 Curvature

Cylinder Example

Cylinder Example-Continue

Shape Operator
Cylinder-example-continue

1.2.4 First Fundamental Form
First Claim
Definition
Local Isometric Surfaces Example
Second Fundamental Form

1.2.6 Gaussian and Mean Curvature
Chapter2 Representation && Transformation [Lectue 2, 3]

2.1 Meshes
2.1.1 Formulation

2.1.2 Storage
Triangle List
Indexed Face Set

2.1.3 Normals
2.1.4 Curvatures

2.2 Point Cloud
2.2.1 Representation
2.2.2 Application-based Sampling

(point cloud) Uniform Sampling
(point cloud) Farthest Point Sampling

af://n0

2.2.3 Voxel Down sampling
2.2.4 Estimating Normals

Least-square Formulation
2.3 Implicit Representations
2.4 Homogeneous Transformation
2.5 Rotation

2.5.1 Some Mathematics
2.5.2 Parameterizing Rotation in NN
2.5.3 Three kinds of Rotation representations

Chapter 3 Reconstruction from Multi-view [Lecture 4, 5, 6]
3.1 Basics [Lecture 4]

3.1.1 Camera Model: Mapping 3D to 2D
Conventions
Intrinsic
Extrinsic
Imaging Formula

3.1.1* Camera Calibration
3.1.2* Depth Images: 2.5D Representation
3.1.3 Epipolar Geometry

Epipolar constraint
Relating Two Views

3.2 SfM: Structure from Motion [Lecture 4]
3.2.1 Overview
3.2.2 Pipeline
3.2.3 Related
3.2.4 Learning Based SfM

SuperPoint: A Learned Detector and Descriptor
SuperGlue: context aggregation + matching + filtering

3.3 MVS: Muti-View Stereo [Lecture 5]
3.3.1 Overview
3.3.2 Classical Pipeline
3.3.3 Learning-based MVS

MVSNet: A first pipeline
Improvements

3.4 NeRF: Neural Radiance Field [Lecture 6]
3.4.1 Implicit Representation
3.4.2 Overview

Volumetric Light Transport Model
3.4.3 Pipeline
3.4.4 Extentions

DNeRF
PixelNeRF
DreamDiffusion: Text to 3D synthesis

3.5 3DGS: 3D Gaussian Splatting
3.5.1 Overview
3.5.2 Pipeline
3.5.3 Comparison with NeRF

Chapter 4 3D Generation [Lecture 7, 8, 9]
4.1 Single image to 3D [Lecture 7]

4.1.1 Overview
4.1.2 Synthesis-for-Learning Pipeline
4.1.2 Single-image to Point Cloud

Pipeline
4.1.3 Single-image to Mesh

Editing-based Mesh Modeling
Summary

4.2 Surface Reconstruction: Mesh from PC [Lecture 8]
Explicit Algorithm
Implicit Algorithms

4.3 Modern 3D Generation Pipeline [Lecture 9]
4.3.1 GAN

2D GAN
Pipeline
Issues in 3D GAN

4.3.2 Autoregressive Models

2D Autogressive Model
Pipeline

4.3.3 Diffusion Models
2D Diffusion
Point Cloud Diffusion
Conditioned Diffusion / Stable Diffusion

4.3.4 Generation without 3D Training Data
Pipeline
Text conditioned 3D Generation

4.3.5 Part-based 3D Generation
Semantic-level Synthesis and Assembly
Hierarchical Generation

Chapter 5 3D Comprehension [after Lecture 10]
5.1 3D Backbone [Lecture 10]

5.1.1 Overview
5.1.2 Voxel Networks
5.1.3 Point Networks

Introduction
Geometry understanding is very important in Robotics, Augmented Reality Autonomous driving and Medical Image
Processing. From geometry understanding the robot can get a priori knowledge of the 3D world.

Geometry theories Curves, Surface, Rotation ···

Sensing: Computer Representation of Geometries Mesh, Point, ···

Sensing: 3D reconstruction from a single image

Geometry Processing: Local geometric property estimation, Surface reconstruction

Recognition: Object classification, Object detection, 6D pose estimation, Segmentation,Human pose estimation

Relationship Analysis: Shape correspondences

Chapter1 Geometry: Curves&&Surfaces [Lecture 1]
This Chapter mainly focus on the basic concepts, definition and math property about 3D geometry.

1.1 Curves

1.1.1 Parameterization

Definition

A parameterized curve is a map from a 1-dimensional region to .

2d curve:
Intuition: A particle moving in space with position at time .

Use parameterized methods to represent a curve.

3d curve:

Application

Bezier Curves, Splines:

af://n8
af://n23
af://n26
af://n27
af://n28
af://n39

A curve is just like One-dimensional “Manifold", Set of points that locally looks like a line. (however when a cusp
occured things becomes extremely complex)

Tangent Vector:

Example: For ,

 indicates the direction of movement.

 indicates the speed of movement.

Arc length

Parameterization by Arc Length

 = inverse function of

1.1.2 2D

Theorem

Define Tangent vector ,

Proof: By definition.

Thus,

af://n57
af://n61

Define Normal vector where is the rotation matrix of in 2D space.

We have the definition of the normal vector: .

Frenet Equation

Theorem

Proof: By and

Now, let's derive the Frenet equations: We know that is a unit tangent vector, meaning , which implies
that . When we differentiate with respect to , we get:

 This shows that is orthogonal to . Since is orthogonal to , and in a 2D
plane, the only orthogonal direction is along the normal vector , we can write , where is the
curvature. For the normal vector , when we differentiate, we get:

 Since , we have .
Computing :

Therefore, . Substituting back:

In summary, we have derived: These equations can be expressed in matrix form:

Thoughts: Use the geometry self-coordinates to describe the shape of itself.

 Curve Theorem

Radius of Curvature is defined as , is the radius of curvature. The geometry meaning indicated how
much the normal changes in the direction tangent to the curve. Or curvature characterizes a planar curve up
to rigid motion, which is always positive.

1.1.3 3D

Osculating Plane

The plane determined by and . And we define the the Binormal Vector Curvature
and Torsion

Curvature & Torsion

Definition

Theorem

Proof

For the first equation, we know that is a unit vector, so . Differentiating with
respect to :

af://n69
af://n73
af://n86
af://n88
af://n89
af://n91

This shows that is orthogonal to . Since forms an orthonormal basis, must lie in the
plane spanned by and :

To find and , we compute:

By definition, . Also:

Since , , and form a right-handed orthonormal basis, , thus .
Therefore, .

For the second equation, we know that is an orthonormal basis, so can be expressed as:

Since , differentiating gives:

From , differentiating:

By definition, , thus .
Therefore, .

For the third equation, since , differentiating:

Since is a right-handed orthonormal basis, . Thus:

Thoughts

Curvature indicates how much the normal changes in the direction tangent to the curve. (Indicates in-plane motion.)
Torsion indicates how much normal changes in the direction orthogonal to the osculating plane of the curve.
(Indicates out-of-plane motion.) Curvature is always positive but torsion can be negative

Frenet Frame

Theorem:

Proof: By the relations above.

 Curve Theorem

Curvature and torsion characterize a 3D curve up to rigid motion.

1.1.4 Geometry Meaning

A curve is defined as a map from an interval to The tangent vector to the curve describes the direction of
motion along the curve. When the curve is parameterized by arc-length, the derivative of the tangent vector is the
normal vector. Both curvature and torsion are measures that describe the change in the normal direction of the
curve. Curvature quantifies how much the normal vector changes in the direction tangent to the curve, while torsion
quantifies how much the normal vector changes in the direction orthogonal to the osculating plane of the

af://n114
af://n120
af://n122

curve. Curvature is always positive, indicating the rate of bending, whereas torsion can be negative, indicating
twisting. Together, curvature and torsion uniquely describe the shape of a curve, up to rigid transformations. The
tangent, normal, and binormal vectors together form a moving frame, known as the Frenet frame, which provides a
local coordinate system that moves along the curve.

1.2 Surface

1.2.1 Surface Parametrization

A parameterized surface is a map from a two-dimensional region to .

The set of points is called the image of the parameterization

Saddle Example

af://n124
af://n125
af://n126
af://n134

1.2.2 Differentiable Manifold

Inspiration

Things that can be discovered by local observation: point + neighborhood.

Properties

Local Properties: properties that can be discovered by local observation (points + neighborhoods).

Smoothness: a continuous one-to-one mapping from local to global.

Tangent Plane: each point can have a tangent plane attached to it, which contains all possible directions passing
tangentially from that point, defined as

Differential of a Surface

Relate the movement of point in the domain and on the surface.

If the point is moving along the vector with velocity , the motion of the point on the
surface is:

 is a linear mapping that maps tangent vectors in the parameter domain to tangent

vectors in space, where is the velocity in the 2D domain, and the is the velocity in the 3D space.

af://n137
af://n152

Thought

Intuitively, the differential of a parameterized surface tells us how tangent vectors on the domain get mapped to
tangent vectors in space. w.r.t, Maps a vector in the tangent space of the domain to the tangent space of the
surface.

Tells us the velocity of point in 3D when the parameter
changes in 2D.

Allows us to construct the bases of tangent plane.

Saddle Example-Continue

af://n171

Calculate Normal on a surface Local change of normal

1.2.3 Curvature

Definition

Cylinder Example

Local change

Assume moves along a curve parameterized by arclength :, and the normal is with unit norm. From
 . We know that the local change of normal is always in the tangent plane!

af://n174
af://n175
af://n179

Let , , thus .

Definition

Vector

Principal Curvatures

Geodesic curvature

af://n191
af://n195

Calculte Cylinder

Visualization min curvature && max curvature

Cylinder Example-Continue

Definition

The direction that bends fastest / slowest are principal directions, which are orthogonal to each other.

Theorem

The principal directions are always orthogonal.

Proof

af://n208
af://n216

--- --- ---

Consider the shape operator (Weingarten mapping) , which can be expressed as:
 where is the normal vector differential. The shape operator is self-adjoint, i.e., for any

tangent vectors : . The principal curvatures are the eigenvalues of
the shape operator and the corresponding principal directions are its eigenvectors:

. Since is self-concomitant, when , the corresponding eigenvectors are necessarily
orthogonal. The proof is as follows: Simultaneous:

 By the self-concomitant property: , thus:

Theorem: Euler’s Theorem:

Planes of principal curvature are orthogonal and independent of parameterization.

Shape Operator

Definition

The shape operator is a linear map that relates the change in the normal vector to the change in the surface
point. and are both in the tangent plane. Therefore, the column space of is a subspace of
the column space of .

Actually, is the "Normal Change Prediction Operator", When a point moves along a direction , the

normal change vector . can represent some information about the normal of the surface. Actually，this

linear map predicts the normal change when moves along any direction.

Computation of Principal Directions

 has some super cool properties:

The principal directions are the eigenvectors of the shape operator

The principal curvatures are the eigenvalues of

Note: The shape operator is a linear map that relates the change in the normal vector to the change in the
surface point.

af://n249

Cylinder-example-continue

1.2.4 First Fundamental Form

First Claim

Curvature completely determines local surface geometry. However, it is insufficient to determine surface globally. See
this below as an example： curvature value and directions are the same for any pair

.

Inspiration

Other than measuring how the surface bends, we should also measure length and angle.

Definition

The first fundamental form is defined as the inner product in the tangent space .

 where .

 This form is dependent on both the surface and the point .

Arc-length by : The arc-length of a curve on the surface can be determined using the first fundamental
form.

Velocity of a Point:

Suppose a point moves with velocity .

The curve on the surface is given by:

The derivative of the curve is:

af://n269
af://n271
af://n272
af://n278

The arc-length is:

With , we have completely determined curve length within the surface without referring to

Local Isometric Surfaces Example

Two surfaces and are locally isometric if there exist parameterizations and such that the first
fundamental forms are equal.

on .

Proof:

For the plane parameterization :

Computing the first fundamental form matrix:

For the cylinder parameterization :

Computing the first fundamental form matrix:

Since , we have:

Therefore, the first fundamental forms of the plane and cylinder are identical:

This proves that the plane and cylinder are locally isometric. Intuitively, this makes sense because we can roll a plane
into a cylinder without stretching or tearing, preserving all distances and angles.

Here are some applications of first form.

Shape Classification by Isometry

af://n300

Geodesic Distances

Distance Distribution Descriptor

Compute distribution of distances for point pairs by randomly picked on the surface

The angle between two vectors on the surface can be determined using the first fundamental form.

With , we have completely determined angles within the surface without referring to

Second Fundamental Form

Theorem

A smooth surface is determined up to rigid motion by its first and second fundamental forms.

1.2.6 Gaussian and Mean Curvature

Definition

Gaussian Curvature:

Mean Curvature:

Theorem

Gaussian and mean curvature also fully describe local bending.

af://n332
af://n337

Gauss's Theorema Egregium

The Gaussian curvature of an embedded smooth surface in is invariant under the local isometries.

Thought

Locally Isometric Surfaces are invariant measured by Gaussian curvature. Gaussian curvatures are vulnerable to
noises in practice and not informative. Needed for more robust surface analysis.

Chapter2 Representation && Transformation [Lectue 2, 3]
This chapter mainly focuses on 3D representations and transformations, including mesh, point cloud and
implicit representation methods.

Other than parametric representations, we use rasterized form(regular grids), including multi-view representation,
depth map, volumetric. And also use irregular geometric form like mesh, point cloud and implicit shape
methods(use to represent the geometry of the surface).

af://n355

2.1 Meshes

2.1.1 Formulation

Mesh formulation can be seen as manifold condition plus a set of :

Manifold condition of discrete mesh is defined as:

1. Each edge is incident to one or two faces.

2. Faces incident to a vertex form a closed or open fan.

Polygonal meshes are piece-wise linear approximation of smooth surfaces. Assume the situation of that you want to
map points to real numbers, a.k.a you want to storage scalar on surface,() there exists problem that
the scale of the mesh triangle is very important. Why is Meshing an Issue?
Interpreting one value per vertex can be challenging, especially when storing scalar functions on the surface.

So good triangulation is important (manifold, equi-length). While real-data 3D are often point clouds, meshes are quite
often used to visualize 3D and generate ground truth for machine learning algorithms. Non-manifold edges violate the
manifold conditions, leading to topological inconsistencies. "Triangle Soup" is a collection of triangles without any
connectivity information, meshes with non-uniform areas and angles can lead to poor quality and interpretation
issues. Cleaning, repairing and remeshing are techniques to improve mesh quality.

af://n359
af://n361
af://n374

2.1.2 Storage

The geometry(3D coordinates), Topology, Normal, color, texture coordinates, Per vertex, face, edge all should be
contained in the mesh information(?)

Triangle List

STL format: Used in CAD.

Storage: Each face is stored with 3 positions.

No connectivity information.

Indexed Face Set

Formats: OBJ, OFF, WRL.

Storage:

Vertex: Position

Face: Vertex indices

Convention: Save vertices in counterclockwise order for normal computation.

2.1.3 Normals

Normal can be computed using various methods, including the right-hand rule and cross products. By indicating the
normal continuity surface can be divided into orientable that have a consistent normal direction. Otherwise non-
orientable: Surfaces like the Möbius strip.

2.1.4 Curvatures

Rusinkiewicz’s Method
An effective approach for face curvature estimation:

Assume a local frame at a small triangle.

Assume that normals are roughly parallel.

Solve for the shape operator using least squares.

 Assume a local at a small triangle, ’s are roughly parallel, and , i.e.,

. Recall the shape operator , so . (This is because we can choose the to
be orthogonal). By approximating , we can set up a system of equations. Solving the
least - square problem (6 equations and 4 unknowns) gives , from which principal curvatures can be
computed. This method is effective for face curvature estimation, robust to moderate noise, and can be used for point
clouds as well .

af://n374
af://n375
af://n377
af://n385
af://n398
af://n400

2.2 Point Cloud

2.2.1 Representation

A point cloud is a set of points in 3D space, representing the surface of an object.

From the real world:

3D scanning techniques (LIDAR, Kinect, Stereo).

Challenges: Resolution, occlusion, noise, registration.

From existing virtual shapes:

Lightweight shape representation.

Compact storage and easy to build algorithms.

2.2.2 Application-based Sampling

Storage or analysis purposes:

Preserve surface information.

Learning data generation:

Minimize virtual-real domain gap.

(point cloud) Uniform Sampling

Independent identically distributed (i.i.d.) samples by surface area, and usually the easiest to implement

Issue: Irregularly spaced sampling.

af://n411
af://n412
af://n429
af://n441

(point cloud) Farthest Point Sampling

Goal: Sampled points are far away from each other.

NP-hard problem.

Greedy approximation method.

Iterative Furthest Point Sampling

Step 1: Over-sample the shape by any fast method.

Step 2: Iteratively select points.

Issues Relevant to Speed

Naive implementation complexity: .

Optimization techniques:

CPU: Vectorization (numpy, scipy.spatial.distance.cdist).

GPU: Shared memory, complexity reduced to .

Implementation Tricks

af://n448

References for GPU implementations:

mvpnet

Pointnet2_PyTorch

2.2.3 Voxel Down sampling

Uses a regular voxel grid to downsample.

Allows higher parallelization.

Generates regularly spaced sampling.

Issues Relevant to Speed

Mapping each point to a bin.

Complexity: .

Dictionary-based Implementation in Numpy

Unique-based Implementation in Torch

2.2.4 Estimating Normals

Plane-fitting: Find the plane that best fits the neighborhood of a point of interest.

Least-square Formulation

Assume the plane equation is with .

Solve the least square problem:

Solution:

Let and .

 is the smallest eigenvector of .

.

def voxel_downsample(points: np.ndarray, voxel_size: float):

 points_downsampled = dict()

 points_voxel_coords = (points / voxel_size).astype(int)

 for point_idx, voxel_coord in enumerate(points_voxel_coords):

 key = tuple(voxel_coord.tolist())

 if key not in points_downsampled:

 points_downsampled[key] = points[point_idx]

 points_downsampled = np.array(list(points_downsampled.values()))

 return points_downsampled

def voxel_downsample_torch(points: torch.Tensor, voxel_size: float):

 points = torch.as_tensor(points, dtype=torch.float32)

 points_voxel_coords = (points / voxel_size).long()

 unique_voxel_coords, points_voxel_indices, count_voxel_coords = torch.unique(

 points_voxel_coords, return_inverse=True, return_counts=True, dim=0

)

 M = unique_voxel_coords.size(0)

 points_downsampled = points.new_zeros([M, 3])

 points_downsampled.scatter_add_(

 dim=0, index=points_voxel_indices.unsqueeze(-1).expand(-1, 3), src=points

)

 points_downsampled = points_downsampled / count_voxel_coords.unsqueeze(-1)

 return points_downsampled

https://github.com/maxjaritz/mvpnet/blob/master/mvpnet/ops/cuda/fps_kernel.cu
https://github.com/erikwijmans/Pointnet2_PyTorch/blob/master/pointnet2_ops_lib/pointnet2_ops/_extsrc/src/sampling_gpu.cu
af://n489
af://n510
af://n514

Normal can be computed through PCA over a local neighborhood. And the choice of neighborhood size is important.
RANSAC can improve quality in the presence of outliers.

2.3 Implicit Representations

In explicit representations of geometry, all points are given directly, genrally can be represented as
. In the explicit representations points sampling is quite easy which make some tasks

easy. However for the task that distinguish something inside or outside of the surface, we can turn to the implicit
representations of geometry.

How to constructive solid geometry: We can combine implicit geometry via Boolean operations.

Distance functions: giving minimum distance (could be signed distance) from anywhere to object. Instead of
booleans, gradually blend surfaces together using distance functions.

There are no “best” geometric representation !

More details about implicit representation will be given in Chapter4.1.3 NeRF . The remain of this chapter

focuses on the transformation and rotation of 3D objects.

2.4 Homogeneous Transformation

Rigid Transformations and Homogeneous Coordinates

Degrees of Freedom DoF: Degree of freedom, representing the number of independent parameters required to
describe a transformation.

af://n532
af://n546

A rigid transformation can be described using a pair , where:

 is the rotation matrix.

 is the translation vector.

We use to denote the coordinate frame. For example:

The origin of frame in frame is given by:

A point in frame is transformed to frame as:

Combining these, the relationship between points in frames and is:

The transformation is non-linear due to the translation component. For example:

Homogeneous Coordinates

To represent translations as linear transformations, we use homogeneous coordinates:

Homogeneous Transformation Matrix

The homogeneous transformation matrix is defined as:

Linear Form of Coordinate Transformation

Using homogeneous coordinates, the transformation can be written in linear form:

For a general notation, we can write:

The transformation between two coordinate systems is related by the inverse of the transformation matrix:

Visualizing 2D Transformations in 2D-H

Scaling

Reflection

Translation

Rotation

2.5 Rotation

2.5.1 Some Mathematics

The set of rotations in -dimensional space is defined by the Special Orthogonal Group , which consists of all
 orthogonal matrices with determinant 1:

This group is significant because:

Group: It forms a group under matrix multiplication.

Orthogonal: Matrices satisfy .

Special: The determinant of each matrix is 1.

Specific cases include:

: 2D rotations, with 1 degree of freedom (DoF).

: 3D rotations, with 3 degrees of freedom (DoF).

Topology of

The topology of is crucial for understanding its properties:

 has the same topology as a circle, indicating it is a one-dimensional manifold.

 has a different topology from , which is significant because:

Circles do not have the same topology as , meaning there are no differentiable bijections between
 and .

This difference affects how rotations can be parameterized and used in computational models.

2.5.2 Parameterizing Rotation in NN

When using rotations in neural networks, ideal parameterizations should:

1. Map from (as network output) to .

2. Be a differentiable bijection.

However, challenges arise when:

Input data points are close, but their corresponding predictions are far apart after convergence. Since the
network is a continuous function, it may make inaccurate predictions between these points.

Special network designs are needed to handle these issues effectively.

af://n610
af://n611
af://n643

2.5.3 Three kinds of Rotation representations

Euler Angles

Euler angles are a way to represent 3D rotations using three angles. These angles represent rotations about the
principal axes . The rotation matrix for Euler angles is given by:

where:

Euler angles provide an intuitive way to represent rotations but suffer from gimbal lock.

(1) Non-uniqueness in representation.

(2) Loss of a degree of freedom under certain conditions, making it impossible to distinguish between certain
rotations. Eg: for

Since changing and has the same effects, a degree of freedom disappears.

Axis-Angle Representation

Euler Theorem: Any rotation in the special orthogonal group can be represented as a rotation about a
fixed axis through a positive angle

 denotes the unit vector of the rotation axis, ensuring that , and is the angle of rotation. This relationship
can be mathematically expressed as . Given a unit vector and an angle , determining the
corresponding rotation matrix involves understanding the dynamics of point rotation around the
specified axis. Consider a point . At time , its position is . Rotating with a unit angular velocity around axis
can be described by the equations:

This leads to the solution of the ordinary differential equation (ODE) being . Given that , the
swept angle is equivalent to , i.e., . Consequently, the position at time is , and the
rotation matrix can be expressed as , which is known as the exponential map. The exponential map
can be further elaborated using the definition of matrix exponential:

The sum of this infinite series can be simplified using the Rodrigues formula, which leverages the fact that
. By applying the Taylor expansion of sine and cosine, the formula becomes:

where is represented as a skew-symmetric matrix:

af://n657

The parameterization of rotations is not unique. For instance, and yield the same rotation. Moreover,
when , , and can be arbitrary. However, under the restriction that and , a unique
parameterization exists.

Rotation Matrix to Axis-Angle

The angle can be computed by

 and the skew-symmetric matrix can be derived as

 In cases where , , corresponding to rotations around the x, y, or z axis by .

Rotations distance in

 How to measure the distance between two rotations, represented by matrices and in the special orthogonal
group ?

To measure the distance between two rotations, a natural approach is to quantify the minimal effort required to
rotate one body from the pose described by to the pose described by . This can be mathematically formulated
by considering the rotation matrix , which represents the relative rotation from to . The distance
between these rotations is given by the angle of this relative rotation, which can be computed using the formula:

This formula arises from the properties of rotation matrices and the relationship between the trace of a matrix and
the cosine of the rotation angle.

From a learning perspective, particularly when these rotations are parameterized and used within neural networks, a
significant challenge emerges. Suppose we are estimating a rotation represented as a 3D vector , where is a unit
vector and is the angle of rotation. To maintain a unique parameterization, it's assumed that . However, if
the current solution is , then maps to a nearby point in but not within the neighborhood of
the domain, causing issues for gradient descent optimization methods. This discrepancy highlights the need for
special network designs that can effectively handle such scenarios.

Quaternion Representation

Quaternions are a four-dimensional extension of complex numbers and can be used to represent 3D rotations.A
quaternion is defined as , where is the real part and form the imaginary part. The
imaginary units satisfy the following anti-commutative properties: , ,

, and .

The product of two quaternions and is given by
. The conjugate of a quaternion is defined as ,

and its norm is . The inverse of a quaternion is .

A unit quaternion can represent a rotation in 3D space. Geometrically, it can be thought of as the shell of a 4D sphere.
To rotate a vector by a quaternion , the vector is first augmented to a quaternion , and then the
rotation is performed as . Composing rotations using quaternions is straightforward: if a vector is first
rotated by and then by , the combined rotation can be represented as , since

.

Quaternion to Rotation Matrix

Quaternions can also be converted to and from rotation matrices. Given a quaternion , the corresponding rotation
matrix can be computed as , where and

. Here, denotes the skew-symmetric matrix of .

Where are real numbers and are the quaternion units. The rotation matrix corresponding to a
quaternion is:

Axis-Angle to Quaternion:

Quaternions are closely related to the angle-axis representation of rotations. The exponential coordinate quaternion
is given by , where is the rotation angle and is the unit axis of rotation. Conversely,
given a quaternion , the rotation angle can be obtained as , and the rotation axis is

 if , otherwise .

Each representation has its own advantages and disadvantages, and converting between them allows us to choose
the most suitable representation for a given task. Euler angles are intuitive but suffer from gimbal lock. Axis-angle
representation is useful for understanding the geometric interpretation of rotations. Quaternions provide a compact
and efficient way to represent and compose rotations, making them popular in computer graphics and robotics.

Thought about Axis angle

The axis-angle representation of rotations offers an intuitive way to describe rotations. By constraining the domain of
, this representation can be unique at most points. It can be converted to and from rotation matrices via the

exponential map and its inverse, when possible. Moreover, this representation induces a distance between rotations,
which serves as a metric in , independent of the parameterization used. From a learning perspective, each
rotation corresponds to two quaternions, which is known as "double-covering." When using quaternions in neural
networks, it is necessary to normalize them to unit length, which may cause issues with gradient magnitudes in
practice. Quaternions are computationally efficient and are widely used in various applications, such as physical
engines and robotics. It is important to pay attention to the convention used for representing quaternions, such as

or . Some popular conventions include for SAPIEN, transforms3d, Eigen, Blender,
MuJoCo, and V-Rep, while is used in ROS, PhysX, and PyBullet.

Chapter 3 Reconstruction from Multi-view [Lecture 4, 5, 6]
This chapter focus on pipelines that take multiview images as input and output a 3d sterio. Section with * are not
include in lectures.

3.1 Basics [Lecture 4]

3.1.1 Camera Model: Mapping 3D to 2D

注意：这一小节使用的都是小孔相机模型

Conventions

Camera coordinate system with units in millimeters.

World coordinate system with units in millimeters.

Physical imaging plane with units in millimeters.

Pixel space , dimensionless.，

af://n719
af://n722
af://n723
af://n726

Intrinsic

According to the principles of lens imaging, the object plane can be approximated as being at infinity, with the image
formed on the physical image plane. The relationship between the camera coordinate system

 and the physical imaging plane can be directly derived through similar
triangles:

rom the physical imaging plane to the pixel space , considerations must be made for
central shift and distortion. Let where and are the pixel width and height (in millimeters),

respectively.

 and are dimensionless central shift quantities. Substituting into the expressions gives:

Thus, we have:

有时候，为了方便讨论，我们会引入一个虚拟的归一化成像平面， ，则

这个式子在后面会经常用到

af://n737

Extrinsic

(Transformation from the world coordinate system to the camera coordinate system
)

Imaging Formula

From the world coordinate system to the pixel space

3.1.1* Camera Calibration

Camera calibration involves determining the intrinsic and extrinsic parameters of a camera to accurately map 3D
world coordinates to 2D image coordinates.

Assume images are captured, each with chessboard corners.

Input: Chessboard corner coordinates and their corresponding image coordinates
.

af://n748
af://n752
af://n755

Depth sensors Depth image

Output: Camera intrinsic parameters , and extrinsic parameters for each image.

Objective: Minimize the reprojection error:

where represents the projection of onto the -th image.

1. Collect Data: Capture a set of images of a known calibration pattern (e.g., a checkerboard) from different
viewpoints.

2. Detect Feature Points: Detect and identify feature points in each image.

3. Estimate Intrinsic Parameters: Use a nonlinear optimization algorithm to minimize the reprojection error.

4. Estimate Extrinsic Parameters: Estimate the extrinsic parameters for each image.

5. Refine the Model: Iteratively refine the camera model by re-estimating the parameters.

6. Validate the Model: Validate the accuracy of the camera model.

In homogeneous coordinates, the projection point in the chessboard coordinate system is , which has
the corresponding relationship:

Assuming the chessboard corners are on the plane :

Let , then:

where is the homography matrix.

3.1.2* Depth Images: 2.5D Representation

We want to aggregate complete 3D scenes from partial observation of the world. Beyond the image taken by camera
which are in 2D pictures(single view/ single frame), there are actually different types of sensors and visual data as
input.

Depth sensors are a form of 3D range finder, which measure multi-point distance information across a wide
Field-of-View (FoV).

A depth image is a single-channel image filled by depth values. Attention that depth image records z depth, i.e.,
the distance along z axis (optical axis) from the optical center to the point, not ray depth (the distance between
the optical center and the point).

Why 2.5D？True 3D representation should enable distance measurement between two points, in addition to
depth, you need to compute that is truly 3D, therefore depth is only 2.5D

af://n788

Stereo Sensors Point Triangulation

Stereo Sensors (1) estimate correspondence, (2) compute disparity and then (3) turn it into depth.

Disparity Parallel binocular depth

Disparity Maps

To fix the disadvantages of passive sterio sensors we can use Structure Light.

3.1.3 Epipolar Geometry

Epipolar constraint

When a 3D point X is projected onto the first image as point x₁, its corresponding projection in the second image must
lie on a specific line known as the epipolar line. As shown in the figure, the potential matches for point p₁ must lie on
the epipolar line l₂.

Relating Two Views

The coordinate transformation from plane I₁ to plane I₂ is represented by [R|t]. For a point with coordinates X in the I₁
coordinate system, its coordinates in the I₂ system are RX+t. Alternatively, this can be described as O₂ having extrinsic
parameters R and t relative to O₁. In the diagrams, the blue frames represent pixel planes (using a perspective camera
model rather than the pinhole camera model discussed earlier). Points p₁ and p₂ are located on these pixel planes. If
we choose the left camera coordinate system as the world coordinate system, the right camera has extrinsic
parameters [R|t] relative to the left camera. According to the equation , we have:

To relate the two views using epipolar constraints: Points x₁ and x₂ in the diagrams are on the normalized image
planes , denoted as . According to , we have:

af://n827
af://n828
af://n831

In terms of scale, we can approximate This gives us . Taking the cross product with t on both
sides:

 Then taking the dot product with x₂ on both sides:
 Defining the essential matrix , we get the first equation:

 Substituting the expressions for x₁ and x₂:
 Defining the fundamental matrix , we get:

3.2 SfM: Structure from Motion [Lecture 4]

3.2.1 Overview

SfM is the process of reconstructing 3D structure from its projections into a series of images taken from different
viewpoints. (Johannes L.Schonberger, e.t.c.) The concept involves analyzing the apparent motion of features across
multiple images to recover the 3D structure of a scene and the camera motion. The aim is to reconstruct sparce 3D
model in a large wide.

 Incremental SfM is a sequential processing pipeline with an iterative reconstruction component

3.2.2 Pipeline

0. Data Association

Input: Unstructured Images

af://n844
af://n845
af://n849

Outputs:

1. identified pairs of overlapping images

2. geometrically verified inlier matches (and optionally, feature descriptors for later use)

3. related camera poses (if known calibration)

1. Feature Extraction and Matching : Detect distinctive features in each image and establish correspondences
between them across different images.

2. Initial Reconstruction : Select an initial image pair(two non-panoramic view), estimate the relative
camera pose between them, and triangulate the inlier correspondences to obtain their 3D coordinates. (for
example, by estimating F matrix?)

3. Bundle Adjustment Optimization : Refine both camera parameters and 3D point positions by minimizing the
reprojection error across all observations.

4. Incremental Reconstruction : For each additional image, estimate its camera pose relative to the existing
reconstruction and triangulate new 3D points. Repeat the bundle adjustment to optimize the entire model.

Bundle Adjustment

Bundle Adjustment is a critical optimization technique used in both Structure from Motion (SFM) and Simultaneous
Localization and Mapping (SLAM). It jointly optimizes camera parameters and 3D point positions by minimizing the
sum of reprojection errors across all observations.

Specifically, it adjusts the camera extrinsic parameters (position and orientation) and the 3D point coordinates to
minimize the difference between the observed 2D feature locations and the projected locations of their corresponding
3D points. This optimization is typically solved using least squares methods and is essential for achieving high-
precision 3D reconstruction and camera pose estimation.

3.2.3 Related

Global SFM estimate global rotations:

The complete understanding of SFM requires knowledge from multiple areas, including:

Stereo vision and triangulation

Camera calibration and pose estimation

Feature detection and matching algorithms

Optimization techniques for non-linear systems
Several important papers and SLAM (Simultaneous Localization and Mapping) algorithms have contributed
significantly to this field, providing robust solutions for various applications in computer vision, robotics, and
augmented reality.

3.2.4 Learning Based SfM

How to use learning-based methods to improve the robustness/precision of the SfM pipeline？Two thoughts:

1. Improving features and keypoints for matching

2. Improving the matching process via global reasoning

af://n891
af://n906

Detector Descriptor

No upsampling layers
Each output cell responsible for a 8 X 8 pixel patch

Bilinear interpolation using keypoint locations to get
descriptors

SuperPoint: A Learned Detector and Descriptor

What makes for good key points? Points should be repeatable and distinctive.

1. Synthetic Pre - training

Dataset Creation: A synthetic dataset “Synthetic Shapes” is created, composed of 2D geometric shapes
(e.g., quadrilaterals, triangles). Interest points are clearly defined at junctions and specific positions. After
rendering, homographic warps are applied to augment data.

af://n914

MagicPoint Training: Use the detector part of SuperPoint architecture to train on “Synthetic Shapes”. Let
the detector function be , and train it with the data from the synthetic dataset. Denote the input image
as , and the output interest points as . MagicPoint outperforms traditional detectors on this
dataset in terms of mean Average Precision (mAP).

2. Homographic Adaptation

1. Formulation: Based on the idea that an ideal interest point operator should be covariant with respect to
homographies. Given a random homography , if is covariant, then , which can be
rewritten as . In practice, we use the empirical sum over a set of random homographies.

The improved detector is defined as , where is the number

of homographies.

2. Choosing Homographies: Decompose potential homographies into simple transformations (translation,
scale, etc.). Sample these transformations within pre - determined ranges and compose them. Experiments
show that gives a good balance in performance improvement.

3. Iterative Process: Apply Homographic Adaptation iteratively to improve the base MagicPoint architecture
on real - world images. The resulting model after adaptation is SuperPoint.

3. Joint Training of SuperPoint

Pseudo - ground Truth Generation: Use the MagicPoint detector and MS - COCO 2014 training dataset
(resized to 240×320 and grayscale) to generate pseudo - ground truth labels. Apply Homographic Adaptation
with twice.

Training with Loss Functions

The final loss is the sum of the interest point detector loss and the descriptor loss , weighted
by , i.e., .

For the interest point detector loss , it is a cross - entropy loss over cells in the output of the

interest point detector. Given the ground - truth labels , ,

where .

For the descriptor loss , it is applied to pairs of descriptor cells and . Given the homography

- induced correspondence , ,

where .

SuperGlue: context aggregation + matching + filtering

Main focus: Context is important in matching!

Formulation

af://n964

Components

A Graph Neural Network with attention: Encodes contextual cues & priors and reasons about the 3D
scene.

Solving a partial assignment problem: Using Differentiable solver and enforces the assignment
constraints agree to domain knowledge

Pipeline

Fron image to dense 3D MVS Pipeline

3.3 MVS: Muti-View Stereo [Lecture 5]

3.3.1 Overview

The definition of multi-view stereo is reconstructing the dense 3D shape from a set of images
and camera parameters. There are many application based on this tech: (1) Enable inspection in hard to reach areas
with drone photos and 3D reconstruction (2) Create 3D model from images (3) Provide tools to inspect on images and
map interactions to 3D.

Multi - View Stereo (MVS) aims to compute the three - dimensional (3D) structure of an object or a scene from multiple
calibrated images. The input for MVS is a set of multi - view images of a scene or object. These images are captured
from different viewpoints, and the camera parameters (both intrinsic and extrinsic) are assumed to be known.
Additionally, a set of sparse matching points (from feature - based matching algorithms) may also be provided as
input in some cases.

Given the multi - view images with known camera parameters, the main goal of MVS is to estimate the dense 3D
surface coordinates of the scene or object. This involves finding the depth value for each pixel in the images (or a
subset of pixels) and then using these depth values to construct a 3D point cloud or a surface model.

Mathematically, for each pixel in a reference image , we want to find its corresponding 3D point
 in the world coordinate system. Using the camera projection equations , where

is the camera intrinsic matrix, is the camera extrinsic matrix, we can relate the 2D pixel coordinates
 to the 3D world coordinates . However, in MVS, we need to solve this problem in a multi - view

context, considering multiple images to disambiguate the depth values and get more accurate 3D
reconstructions.

3.3.2 Classical Pipeline

Step 1: Select Matching Views
Choose several matching views corresponding to the reference view.

Step 2: Pixel - level Processing in Iterations

i: For each pixel in the reference view, further select matching views. This is to narrow down the views that
are most relevant for calculating the depth information of this specific pixel.

ii: Define the range of depth and normal values. This provides a search space for estimating the 3D position
of the pixel.

iii: Compute the photometric matching cost (such as Normalized Cross - Correlation, NCC) between the
reference view and multiple matching views. This cost measures how well the regions around the pixel in
different views match in terms of photometric properties.

iv: Select the candidate 3D point with the optimal (lowest in most cases) matching cost. This 3D point is
considered as the best estimate for the position of the pixel in 3D space.

af://n999
af://n1007
af://n1015

Step 3: Post - processing
Filter out noisy depth values and fuse multiple depth maps. This step aims to improve the quality of the depth
information by removing incorrect or inconsistent depth values and combining depth maps from different
processing steps or views.

The basic idea of Dense Depth Estimation which is the core step in MVS (estimate the depth values for a large
number of pixels, ideally all pixels in the images) is reconstruction from photometric consistency. The assumption
is that corresponding points in multiple images of the same scene should have similar photometric properties (such
as color and intensity). By minimizing the photometric differences (e.g., photometric consistency loss) between
projected points across different views, we can estimate the 3D structure. For example, in a multi - view setup, if a
point in one image is projected to another image based on a hypothesized 3D position, the color/intensity at the
projected location should match the actual pixel value in that image as closely as possible.

Plane Sweep: We form different depth planes based on the reference view. For each depth plane, we use a
homography matrix to map the plane to the source views and calculate the matching cost (such as
Normalized Cross - Correlation - NCC) between the projected regions. The depth value with the minimum
matching cost is considered as the estimated depth for the pixel in the reference view.

Details: Calculation of the Homography Matrix

Principles of selecting views Selecting Examples

Geometric Proximity: Views that are geometrically close to the reference
view are preferred. Geometrically close views are more likely to have
overlapping regions that can provide consistent information for depth
estimation. For example, cameras that are adjacent in a multi - camera
setup covering a scene.
Photometric Similarity: Views with similar photometric properties to the
reference view are chosen. Views where the intensity and color of
corresponding regions match well are more suitable for calculating
accurate depth information. If there are significant photometric differences
(e.g., due to different lighting conditions), it can lead to errors in depth
estimation.
Spatial Coverage: Views that cover different parts of the scene relative to
the reference view are selected. This helps in getting a more
comprehensive understanding of the 3D structure.

Assume that the world coordinate system is the coordinate system of the reference camera. Then:

A pixel in the reference image satisfies .

 is a point on the plane formed by back - projecting the reference image at a distance into
space. The plane is parallel to the imaging plane.

Let be the normal vector of (). Then , which implies .

For any source camera, with camera intrinsic matrix and extrinsic matrices :

A pixel in the source image satisfies

.

Also, .

The matrix is defined. This matrix establishes the correspondence

between pixels of the two images and is called the homography matrix.

Selecting multiple matching views:

The homography matrix between the pixel
coordinate systems of two cameras for a point on
the plane is defined as

the homography matrix between the two
camera coordinate systems (ignoring intrinsic

effects) is

All feature maps are warped into different frontoparallel
planes of the reference camera to form N feature volumes

3.3.3 Learning-based MVS

Why learning based methods? Learned feature can do more robust matching and the shape prior learned by the
network can do more complex reconstruction. MVSNet

MVSNet: A first pipeline

Image Feature Extraction

Input: input images .

Process: An eight - layer 2D CNN is utilized. Strides of layer 3 and 6 are set to 2, dividing the feature towers
into three scales. In each scale, two convolutional layers (with Batch Normalization (BN) and Rectified Linear
Unit (ReLU), except the last layer) are applied, and parameters are shared among all feature towers.

Output: 32 - channel feature maps , which are the size of the input images in each
dimension.

Homography

Cost Volume Construction

Input: Extracted feature maps , camera parameters of the input cameras.

Process:

Differentiable Homography: All feature maps are warped into different frontoparallel planes of the
reference camera to form feature volumes . The coordinate mapping is ,

where .

af://n1074
af://n1076

Cost Metric: A variance - based cost metric aggregates the feature volumes into a single

cost volume . , with being the average volume among all
feature volumes.

Cost Volume Regularization: A multi - scale 3D CNN (akin to a 3D version of UNet) refines the cost
volume to generate a probability volume for depth inference. After the first 3D convolutional layer,
the 32 - channel cost volume is reduced to 8 - channel, and the number of convolutions in each scale
changes from 3 to 2 layers. The last convolutional layer outputs a 1 - channel volume, followed by a
softmax operation along the depth direction for probability normalization.

Output: Probability volume . The cost volume in this context is constructed based on the frustum of the
reference camera. It implicitly encodes camera geometries in the network to build 3D cost volumes from 2D
image features, which is crucial for depth map inference.

Depth Map Generation

Input: Probability volume , reference image .

Process:

Initial Estimation: The depth map is computed as the expectation value along the depth direction,
.

Probability Map: The quality of a depth estimation is defined by the probability sum over the four
nearest depth hypotheses.

Depth Map Refinement: A depth residual learning network is employed. The initial depth map and the
resized reference image are concatenated as a 4 - channel input, passed through three 32 - channel 2D
convolutional layers followed by one 1 - channel convolutional layer to learn the depth residual. The
initial depth map is added back after pre - scaling to and post - scaling back.

Output: Refined depth map.

Loss Calculation

Input: Ground truth depth map, initial depth map , refined depth map .

Process: The loss function is , where is the set
of valid ground truth pixels, is the ground truth depth value of pixel , and in experiments.

Output: Loss value for training the network.

Improvements

Analyze per-pixel confidence intervals && Narrow down the sampling range based on uncertainty

af://n1144

Coarse-to-fine Sampling Cascaded Depth Prediction

--- ---

Represent the scene with point cloud, which is suitable for sparse occupancy and
memory - efficient. First, estimate a low - resolution depth map with existing
methods, then unproject to get the initial point cloud. The goal is to refine the input
depth map by moving the unprojected points along the camera direction. The flow
prediction is calculated as the expected offset, such as

Point - based Multi - View Stereo Network

Depth - Normal Consistency
 - Normal Estimation as Auxiliary Loss: Estimate the normal along with the depth map. Using normal
estimation as an auxiliary loss in the depth - map prediction process has shown to be quite effective.

 - Refine Depth from Normal: Assume that pixels within a local neighborhood lie on the same tangent
plane, expressed as . Based on this, the depth of neighbor pixels can be derived from the current
pixel normal. For example, , where is the normal vector,

 are the coordinates of the neighbor pixel, and and are related to the camera's
optical properties and pixel coordinates. This method regularizes the depth by normals to improve depth

accuracy and surface smoothness.

Summary of learning based MVS: Deep volumetric stereo has the potential to achieve more robust matching and
more complete 3D reconstruction. However, volume - based methods face a significant drawback in terms of
computational efficiency. This is mainly because the 3D target scenes they deal with are often sparse, resulting
in unnecessary computations over large volumes of empty or redundant space. To address this issue, adaptive
sampling emerges as a viable solution. By intelligently adjusting the sampling process according to the
characteristics of the scene, it can enhance both computational efficiency and the quality of reconstruction.
Additionally, normal prediction, which is relatively easier compared to depth prediction, can play a crucial role.
Incorporating normal prediction into the depth - estimation process can help improve depth accuracy and
smoothness, further refining the overall 3D reconstruction results.

3.4 NeRF: Neural Radiance Field [Lecture 6]

3.4.1 Implicit Representation

The difference of implicit and explicit representation:

2 ways of implicit representation

Signed Distance Field (SDF) maps each 3D points p to it’s signed distance to the object surface S. The sign is
positive if the P is inside the object, and negative otherwise.

Mixture of Gaussians represents a shape as a mixture of local implicit functions (3D gaussians)

af://n1168
af://n1169

! [important] Not all complex shapes can be efficiently / accurately represented with simple
primitives

3.4.2 Overview

When focusing about 3D scene rendering, the material, lighting and geometry should be taken into consideration.
Camera that take the scene's photo is defined by intrinsics and extrinsics (6DoF). The high level idea of neuaral
rendering is to use a neural network to encodes entire scene description, lighting, materials, etc. And then use the
rendering equation to get the image given view point.

af://n1187

However the direct use of volume representation leads to horrible storage requirements.

NeRF uses an implicit function to replace the volume representation, and track light emission along different
directions.

There are 2 general idea behind NeRF: The appearance of the surface will be observed at views along the camera ray
&& If we have a light transport model from the surface along the ray to the pixels, we will know the pixel color.

Volumetric Light Transport Model

Transmission in the volumetric light transport model is related to the attenuation of light as it passes through the
volume. The attenuation coefficient (also representing transparency) is a key factor. A higher means more
attenuation of light. Mathematically, the transparency of a ray segment of length is described by the Beer -
Lambert's Law: . Here, represents the opacity of the ray segment at length . As
increases or increases, the opacity increases, indicating more light is being attenuated. In - Scatter &
Emission: In - scatter refers to the process where light scatters within the volume, and emission is about the light
being emitted from points within the volume. The emission radiance is denoted as . The total light emitted along a
ray segment from to is calculated as . When is assumed to be a constant , we

can approximate this integral. First, substitute into the integral:

Integrating with respect to gives

af://n1195

So the light emitted is , which can also be written as using the Beer - Lambert's Law
relationship. In practice, for numerical computation, we use ray marching to discretize the radiance integration. For a

single point along the ray, the light intensity after passing through that point is given by , where

is the opacity of the point, is the predicted emission radiance at that point, and is the attenuation coefficient at
that point. When there are multiple points, the light intensity at each subsequent point takes into account the light

from previous points. For example, for two points, . The term represents the

light that is transmitted from the first point to the second point. In general, for points along a ray, the transmittance

 and the final radiance of the ray

This formula sums up the contributions of light from all the points along the ray, considering both the emission from
each point and the attenuation and transmission of light from previous points.

3.4.3 Pipeline

2 Trick of implemention

af://n1206

Positional Encoding
Hierarchical Sampling - Fine
Sampling

Summary

3.4.4 Extentions

Thought: Remaining 2 main issue of the original NeRF:

• Handling dynamic scenes when acquiring calibrated views D-NeRF: Neural Radiance Fields for Dynamic
Scenes

• One network trained per scene - no generalization PixelNeRF

DNeRF

The scene is represented in a 6D radiance field, incorporating 3D spatial coordinates , a time coordinate , and
viewing direction . The deformation network plays a crucial role. It predicts the deformation field between
the scene at time and the canonical space () and is defined as

where is the deformation vector. This network allows D - NeRF to model scene changes over time.

af://n1223
af://n1228

The canonical network predicts the color and density in the canonical configuration. Given a 3D point and
viewing direction , it outputs:
These values are essential for determining the appearance and transparency of points in the scene. Volumetric
rendering in D - NeRF is similar to that in NeRF but adjusted for dynamic scenes. The color of a ray passing
through the scene at time is calculated as:

The transmittance along the ray from the near plane to the current position is defined as:

 The values of and are obtained from the canonical

network after deforming the point using . In the overall D-NeRF rendering pipeline, for each pixel in the output
image at a specific time , a ray is cast from the camera. The ray passes through the 6D radiance field. First, the
deformation network deforms the points along the ray according to the time - dependent deformation field. Then,
the canonical network predicts the color and density values for the deformed points. Finally, the volumetric
rendering equation is used to integrate the contributions of these points along the ray, considering the transmittance,
to obtain the final color of the pixel. This process is repeated for all pixels in the image to generate the rendered
image at time . Thus, D-NeRF's rendering pipeline effectively combines deformation, canonical representation, and
volumetric rendering to handle dynamic scenes and enable the synthesis of novel views for scenes with moving or
deforming objects.

PixelNeRF

The traditional NeRF optimizes the radiance field of each scene independently and requires many calibrated views. It
also uses a canonical coordinate frame. PixelNeRF, introduces several key improvements. It trains across multiple
scenes to learn a scene prior. This allows the model to generalize better and make more accurate predictions even
with a sparse set of views, which is crucial for the few - shot view synthesis task. Mathematically, while NeRF
represents a 5D mapping from spatial and viewing direction coordinates to color and density

, PixelNeRF builds on this concept but with a different approach. It predicts a NeRF
representation in the camera coordinate system, which simplifies the process and makes it more adaptable to the
input images. In its architecture, PixelNeRF uses a CNN encoder to extract image features from the input images.
These features are then fed into an MLP along with the location information. The MLP outputs the color and opacity
values. This integration of CNN - based feature extraction and MLP - based prediction allows PixelNeRF to incorporate
a variable number of posed input views. For example, if only one or two images are available, the model can still
leverage the learned scene prior and the features from these images to generate a reasonable NeRF representation.

af://n1237

GS representation Volume randering?

DreamDiffusion: Text to 3D synthesis

DreamFusion uses a pretrained 2D text - to - image diffusion model to perform text - to - 3D synthesis. It initializes a
neural radiance field (NeRF) randomly. During training, it samples random camera and light positions. The NeRF
renders 2D images from these viewpoints. The Score Distillation Sampling (SDS) loss is computed based on the
difference between the noise predicted by the diffusion model for these rendered (noisy) images and the injected
noise. This loss is used to optimize the NeRF parameters via gradient descent. By minimizing this loss over many
iterations (e.g., 15,000), the NeRF is trained to generate 2D renderings that match what the diffusion model expects
for the given text prompt, ultimately resulting in a 3D model that can be viewed, relit, or composited in 3D
environments.

3.5 3DGS: 3D Gaussian Splatting

3.5.1 Overview

3D Gaussian Splatting (3DGS) is a method for representing and rendering radiance fields. Compared to NeRF, which
parametrize radiance densely, its idea is to parameterize the radiance field sparsely, only where the density is non-
zero. Instead of representing the entire 3D space densely as in some traditional methods or like the full-volume
representation in early neural rendering approaches, 3DGS uses 3D Gaussian blobs floating in space. Mathematically,
a 3D Gaussian function is defined as , where is the coordinate in 3D space,

is the mean of the Gaussian, and is the covariance matrix. In 3DGS, these Gaussians are used to represent the
radiance field. Each Gaussian blob has its own set of parameters (,) that determine its position, shape, and the
contribution to the radiance field.

af://n1240
af://n1243
af://n1244

3.5.2 Pipeline

Initialization: The process starts with an initialization step. This may involve using Structure from Motion (SfM)
points to determine the initial positions and properties of the 3D Gaussians. The SfM points provide an initial
estimate of the 3D structure of the scene, which serves as a basis for placing the Gaussian blobs.

Density Control: 3DGS focuses on areas of non - zero density. The density of the Gaussians is carefully
controlled. If a region has a higher density, more Gaussians are placed or adjusted to better represent the
radiance in that area. This density - based placement of Gaussians is a key difference from methods like NeRF,
which represent the entire volume.

Projection: When rendering, the 3D Gaussians are projected onto the 2D image plane. Since Gaussians are
closed under affine transforms, an affine mapping (such as the cam2world matrix) can be applied.
For a 3D Gaussian , after the affine mapping, it becomes

, where is the coordinate in the new (projected) space. And

when integrating along an axis, , which shows how the 3D Gaussian projects to a

2D Gaussian on the image plane. We can Using Rasterization Instead of Volume Rendering!

Rasterization: Instead of using volume rendering as in NeRF, 3DGS often uses rasterization. Rasterization is a
process of converting the 3D Gaussians into 2D pixels on the image plane. This can be more computationally
efficient in some cases, especially when dealing with scenes where the radiance field can be well - approximated
by a sparse set of Gaussians.

Adaptive Operation and Gradient Flow: 3DGS includes adaptive operations to optimize the representation of
the radiance field. These operations can adjust the parameters of the Gaussians (such as their positions, shapes,
and colors) based on the error between the rendered image and the ground - truth (if available). The gradient
flow is used to update these parameters during the training process, similar to how neural networks are trained.

3.5.3 Comparison with NeRF

Representation:

NeRF represents the radiance field as a continuous 5D function , where
are spatial coordinates, are viewing direction coordinates, and are the output color and
density. It densely parameterizes the entire volume of the scene.

af://n1253
af://n1267

Task --- ---

Single image to
depth map

https://arxi
v.org/pdf/2
012.06980

3DGS, on the other hand, sparsely parameterizes the radiance field using 3D Gaussian blobs. It only focuses
on regions with non - zero density, which can lead to more efficient representation, especially for scenes
with large empty spaces.

Rendering Method:

NeRF uses volume rendering with ray marching. The final radiance of a ray is calculated as

, where . This involves integrating the

contributions of multiple points along the ray through a series of complex calculations.

3DGS uses rasterization, which is generally faster for scenes that can be well - represented by a sparse set of
Gaussians. Rasterization directly projects the 3D Gaussians onto the 2D image plane, simplifying the
rendering process.

Training and Efficiency:

NeRF requires training on a per - scene basis and often takes a relatively long time to train due to the
complexity of volume rendering and the need to optimize a large number of parameters for each scene. For
example, Mip - NeRF360 takes 48h to train.

3DGS can achieve relatively high - speed rendering with competitive PSNR values. For instance, some 3DGS -
based methods can train in a few minutes (e.g., 6 minutes or 7 minutes) and achieve PSNR values
comparable to or better than some NeRF - based methods, while also having high rendering frame rates
(e.g., 135fps or 93fps).

Chapter 4 3D Generation [Lecture 7, 8, 9]
This chapter focus on different techs that recover or generate 3D geometry, section 4.1 talks about how 3D
geometry (specially point cloud) is generated from images and section 4.2 talks about how mesh is recovered
from coarse point cloud representation. Section 4.3 includes modern pipelines that generate 3D object.

4.1 Single image to 3D [Lecture 7]

4.1.1 Overview

https://arxiv.org/pdf/2012.06980
https://arxiv.org/pdf/2012.06980
https://arxiv.org/pdf/2012.06980
af://n1291
af://n1294
af://n1295

Task --- ---

Single image to 3D
point cloud
generation

https://arxi
v.org/pdf/1
612.00603

Single image to
implicit field
function

https://arxi
v.org/pdf/1
802.05384

4.1.2 Synthesis-for-Learning Pipeline

For the task that takes single image as input and outputs a 3D object, information are not sufficient. Training deep
neural network to do the inference needs lot of data with labels. In this case, we need many image-3D shape pairs.
The fist solution is to use ToF or stereo sensors(Kinect, RealSence) and LiDAR to get real 3D data. The second solution
is to develop a synthesis pipeline. By rnedering object form the shape dataset, we can get synthesis 2D images - 3D
shape pairs for the training.

4.1.2 Single-image to Point Cloud

ShapeNet: http://www.shapenet.org

Objaverse-XL (10M CAD): https://objaverse.allenai.org/

https://arxiv.org/pdf/1612.00603
https://arxiv.org/pdf/1612.00603
https://arxiv.org/pdf/1612.00603
https://arxiv.org/pdf/1802.05384
https://arxiv.org/pdf/1802.05384
https://arxiv.org/pdf/1802.05384
af://n1314
af://n1318

Up sampling FC

Pipeline

Point cloud has permutation invariance thus loss needs to be invariant to ordering of points! Following are 2 popular
distance metric for measuring 2 points sets.

Earth Mover's Distance (EMD): Since point clouds are sets of orderless points, traditional loss does not work.
EMD is used to measure the distance between two point sets. It finds a 1 - 1 correspondence between point sets.

, where is a bijection. EMD is continuous and
differentiable except for a zero - measure set. Many algorithmic studies focus on fast EMD computation, and
there are parallelizable implementations on CUDA, as well as fast approximated EMD implementations.

Chamfer Distance (CD): Another popular metric for point clouds. It is based on the nearest neighbor
correspondence for each point. The formula is

. It is also used as a loss function in the

learning process of single - image to point cloud reconstruction.

Differences

Calculation Principle:

CD simply sums the closest distances without considering a global optimal matching. It is a more local -
based measure, looking at the nearest neighbor relationships for each individual point.

EMD, on the other hand, finds an optimal global bijection (\phi) between the two point sets. It takes into
account the overall distribution and matching of points, aiming for a more globally optimal alignment.

Sensitivity to Sampling:

CD is insensitive to sampling. Changes in the sampling density of the point clouds do not significantly
affect its value, as it only focuses on the closest distances between individual points.

EMD is sensitive to sampling. Since it depends on finding an optimal one - to - one mapping, variations
in the number or distribution of points (sampling) can greatly influence the calculated distance.

Inspiration of the 2 branch architecture:

af://n1320

2 branch architecture visualization of 2 branch output

Design of Upconvolution Branch Visualization

The paper adopt a two - branch architecture (e.g., ConvNet + FC/UpConv), where different branches are designed to
handle different aspects of the point cloud generation. The Upconv branch learns a smooth surface parameterization
from 2D to 3D consistent across objects. However the FC branch finds more ntricate structures which are more non-
smooth and change more.

4.1.3 Single-image to Mesh

Designing Loss for Edge Prediction is Hard: Ambiguity

One option is to first build a high-resolution intermediate representation, and then convert the point cloud to mesh.
(Section 4.2)

Editing-based Mesh Modeling

Key idea: starting from an established mesh and modify it to become the target shape.

Loss selection is crucial!

af://n1368
af://n1372

Vertices Distance Metrics:

Earth Mover's Distance (EMD): . This metric helps in
measuring the dissimilarity between the two sets of vertices.

Chamfer Distance (CD): Use the CD to measure the distance between vertex sets.
.

Uniform Vertices Distribution: Penalize flying vertices and overlong edges with the loss function
, where represents a vertex and is the set of its neighboring vertices.

This encourages equal edge lengths between vertices and helps in obtaining high - quality recovered 3D
geometry.

Mesh Smoothness: Encourage the intersection angles of faces to be close to 180 degrees using the loss
, where is the intersection angle of faces. This promotes a smoother mesh

surface.

Normal Loss: Assume that vertices within a local neighborhood lie on the same tangent plane. Regularize the
edge to be perpendicular to the underlying ground - truth vertex normal. One approach to find the vertex normal
is to use the nearest ground - truth point normal as the current vertex normal. The loss penalizes the deviation of
the edge direction from being perpendicular to the vertex normal.

Summary

The synthesis-for-learning pipeline utilizes easily-obtainable synthetic data to tackle challenging 3D visual
understanding tasks. It has been demonstrated that generating a 3D point cloud from a single image is feasible when
employing properly defined set metrics like Earth Mover's Distance (EMD) and Chamfer Distance (CD). However, there
exists natural ambiguity in single-image to 3D conversion. Regarding single - image to mesh, it can be accomplished
through template deformation, yet mesh reconstruction demands more regularizations to ensure accurate and high-
quality results.

4.2 Surface Reconstruction: Mesh from PC [Lecture 8]

The problem definition for this section is to reconstruct the triangle mesh surface given the original (noisy) (with or
without normals) point cloud.

Some Desired Properties of the Algorithm:

Fast: The input point cloud may be large. We expect the computation to be fast.

Robust: May recover the underlying surface structure even when the input point cloud is noisy

Output mesh is desired to satisfy some geometric constraints

af://n1395
af://n1397

Manifold Watertight

Explicit Algorithm

Ball - Pivoting Algorithm

Input: A point cloud and a hyper - parameter .

Assumption: Input points are dense enough such that a ball of radius cannot pass through the surface without
touching the points.

Principle for face formation: Three points form a triangle if a ball of radius touches them without containing
any other points.

Procedure:

Start with a corner point and a -ball.

Verify potential edges (triangles) in the -neighborhood.

--- ---

The ball pivots around an edge (triangle) until it touches another point, forming another triangle.

The process continues until all reachable edges have been tried. Then start from another seed triangle until
all points have been considered.

Radius - related issues:

Appropriate radius: It can correctly connect points to form a proper mesh.

Radius too small: Some edges will not be created, leaving holes.

af://n1414

Large radius: Some points will not be reached when the curvature of the manifold is larger than .

Iterative Approach: Using multiple radii, iteratively connect the points. Small radii capture high frequencies, and
large radii close holes.

Ambiguous Structures: Traditional rule - based methods (like the ball - pivoting algorithm) cannot handle
ambiguous structures (e.g., thin structures & adjacent parts) well. Defining a rule for structure estimation is
sometimes hard, and no single value can separate some complex point cloud structures.

Learning - Based Method: Train a network to filter out incorrect connections and utilize the Intrinsic - Extrinsic
Ratio to guide the training.

Pros and Cons:

Pros: Linear complexity (fast) and no dependence on normals.

Cons: Can lead to non - manifold situations, and there is no watertight guarantee. Regarding robustness,
learning can improve it, but current learning - based methods still do not work well when the sampling
density is low.

Implicit Algorithms

For a 3D space, we have:

Interior:

Exterior:

Surface: (zero set, zero iso - surface)

Example implementation: Signed Distance Function (SDF), distance to the surface.

Two basic steps of Implicit Meshing Algorithm

Estimate an implicit field function from data.

Extract the zero iso - surface.

Estimate an implicit field function from data.

1. Radial Basis Functions (RBF)

Definition: Radial basis functions : function value depends only on the distance from a center point ,
i.e., . Use a weighted sum of radial basis functions to approximate the shape:

, where is a polynomial of low degree.

Constraints: is not enough as it may get the trivial solution . So we use normal to add
off - surface points:

af://n1468

Consistent Normals are Required

Estimate Parameters Estimate Parameters

Implementation Details:

Use triharmonic basis functions for its extrapolation ability. Avoid using RBF with compact or
local support (e.g., Gaussian density).

A third - order polynomial is practically good.

Do not need to use all the input data points as RBF centers. Use a greedy algorithm to select a subset of
points. For noisy data, treat the linear equation as solving a linear square problem and add a
smoothness term.

Pros and Cons:

Pros: Global definition, single function, globally optimal.

Cons: Global definition leads to global optimization, which is slow.
2. Moving Least Squares (MLS)

Do purely local approximation of the SDF. The weights change depending on where we are evaluating.

Polynomial least - squares approximation:

For a general polynomial in 3D,
, , where

 and .

In MLS, we find that minimizes the weighted sum of squared differences:

Weight Functions:

Gaussian: , where is a smoothing parameter.

Wendland function: Defined in and , , ,
, .

Singular function: , for small , weights are large near (interpolation).

The MLS function is continuously differentiable if and only if the weight function is continuously
differentiable. In general, is as smooth as .

3. Poisson Surface Reconstruction

Poisson surface reconstruction (Kazhdan M, Bolitho M, Hoppe H. “Poisson surface reconstruction.”
ESGP, 2006):

Advantages: Robust to noise, adapts to the sampling density.

Disadvantages: Over - smoothing.

Screened Poisson surface reconstruction (Kazhdan M, Hoppe H. “Screened poisson surface
reconstruction.” ToG, 2013):

Advantages: Sharper reconstruction, faster.

Disadvantages: Assumes clean data.

Extract the zero iso - surface

1. Marching Cubes (3D) and Marching Squares (2D)

2D Marching Square:

Give every cell a number based on which corners are true/false.

Look up the contour in a look - up table and put the contour lines in the database.

Determine the line end - points values and use linear interpolation to get a more accurate position.

3D Marching Cube:

There are cases in total. The first published version exploits rotation and inversion and only
considers 15 unique cases.

Ambiguity: Ambiguity can lead to holes.

Solution to Ambiguity: Considering more cases in the look - up table by watching a larger context.

1. Using Neural Network to Approximate Implicit Field Function

DeepSDF:

Single Shape DeepSDF: Use the network to overfit a single shape.

Coded Shape DeepSDF: Use a latent code to represent a shape, so that the network can be used for
multiple shapes.

Learning - Based Marching Cube: Such as Deep Marching Cubes: Learning Explicit Surface Representations
and Neural Dual Contouring.

Sign Agnostic Learning of Shapes from Raw Data:

Unsigned distance is easy to obtain (distance to the point cloud & triangle soup).

Loss design 2d result

Learn signed distance from unsigned distance ground - truth. Require a special loss function:
, where is the input raw data (e.g., a point cloud or a

triangle soup), is the learned signed function, is the distribution of the
training samples defined by , is some unsigned distance measure to , and
is a similarity function. For example, .

There are two local minima in the loss function. We prefer the case where is a signed function and
resembles to use marching cube. We can pick a special weight initialization so that

 (signed distance function to an - radius sphere) to avoid convergence to the
unsigned local minima.

4.3 Modern 3D Generation Pipeline [Lecture 9]

4.3.1 GAN

2D GAN

GAN's learning Objective: Generate output that is indistinguishable from a ‘real’ example

af://n1629
af://n1630
af://n1631

Generator Latent Vector Arithmetic

GANs don’t maximize likelihood of
dat

Definition 2d Pipeline

Pipeline

Generator: Incrementally increase resolution via convolutions and upsampling layers.

Issues in 3D GAN

4.3.2 Autoregressive Models

2D Autogressive Model

af://n1634
af://n1645
af://n1653
af://n1654

Pipeline ---

Pipeline

4.3.3 Diffusion Models

2D Diffusion

Point Cloud Diffusion

Conditioned Diffusion / Stable Diffusion

Recap in 2D:

af://n1662
af://n1664
af://n1665
af://n1673
af://n1675

3D

4.3.4 Generation without 3D Training Data

Pipeline

Key idea is that generate 3D representations such that their renderings are indistinguishable from real sample.

af://n1683
af://n1684

Text conditioned 3D Generation

4.3.5 Part-based 3D Generation

Semantic-level Synthesis and Assembly

For fine-grained parts, we need coarse-to-fine generation

af://n1688
af://n1691
af://n1692

Hierarchical Generation

StructureNet represents shapes as a hierarchy of graphs for 3D shape generation. It uses a
Variational Autoencoder with hierarchical graph networks for encoding and decoding. The encoder maps shapes to a
latent feature vector through a geometry encoder for leaf nodes and a graph encoder for intermediate nodes. The
decoder transforms back into a shape. The VAE is trained with a loss function

, which includes reconstruction, structure consistency, and variational
regularization losses. This framework enables various applications such as shape reconstruction, generation,
interpolation, abstraction, and editing, outperforming baseline methods in experiments.

Chapter 5 3D Comprehension [after Lecture 10]
This chapter introduces networks and pipelines that comprehends and analysis 3D object.

5.1 3D Backbone [Lecture 10]

5.1.1 Overview

To understand 3D data (voxel, point cloud), special network design is necessary. 3D backbone takes 3D data as input
and is the foundamental of down stream tasks like object classification, object part segmentation and semantic scene
parsing.

5.1.2 Voxel Networks

Voxelization: Represents the occupancy of regular 3D grids. A 3D CNN on volumetric data uses 4D kernels.
However, it has a complexity issue. For example, the input resolution of 3D voxel data in 3DShapeNets (2015) is

 with elements, compared to AlexNet's 2D input resolution of with
elements. There is also information loss in voxelization.

af://n1698
af://n1713
af://n1716
af://n1717
af://n1719

Solutions to Complexity and Information Loss

Learn to Project: Use “X - ray” rendering + Image (2D) CNNs, which have a very low number of parameters
and low computation.

Sparsity of 3D Shapes: Store only the occupied grids and constrain the computation near the surface.
Sparse convolution is used, and there are several implementation libraries like SparseConvNet,
MinkowskiEngine, TorchSparse, and Tensorflow3D. Octree is another approach, which recursively partitions
the space with each internal node having eight children and uses a hash table for neighborhood searching.
It shows better memory efficiency compared to voxel CNNs.

5.1.3 Point Networks

PointNet

af://n1733

A point cloud consists of orderless points, where each point is represented by a -dimensional
coordinate. Mathematically, we can represent a point cloud as a set of points , with

. When processing point clouds with a deep neural network, the network's output should be
invariant to the permutation of these points. That is, for any permutation of the indices ,
the function should satisfy .

Constructing Symmetric Functions

PointNet constructs symmetric functions in the form of ,
where is a symmetric function. Common examples of symmetric functions are the maximum operation

 and the sum operation
.

 is a function implemented by a Multi - Layer Perceptron (MLP). For each point in the point cloud,
maps the original point features to a new feature space. After that, the symmetric function aggregates
these new - mapped features. For example, if is the max operation, it selects the maximum value among

, which is invariant to the permutation of the input points.

 is another function, often implemented by an MLP, which further processes the output of to generate
the final feature representation.

Implementation Details

In the implementation of PointNet, after the input points pass through the initial transformation (using T -
Net for 3D coordinate transformation and feature transformation), they are fed into MLPs for feature
extraction. For example, the input points first go through an MLP with output dimensions and then
another MLP with output dimensions .

The global feature is obtained by applying a max - pooling operation over the output of the last MLP.
Mathematically, if the output of the MLP for points is , where , the global
feature . Since the max - pooling operation is a symmetric function, the
resulting global feature is invariant to the permutation of the input points. This global feature can then be
used for tasks such as classification or further processed for segmentation tasks in PointNet.

PointNet++

Basic Idea: Recursively apply PointNet at local regions to achieve hierarchical feature learning, local
translation invariance, and permutation invariance. It uses set abstraction (farthest point sampling +
grouping + PointNet) for hierarchical point set feature learning. It can be applied to classification and
segmentation tasks. For example, in non - Euclidean spaces for animate shape recognition, it can generalize
well when using intrinsic point features (HKS, WKS, Gaussian curvature) and intrinsic distance metric
(geodesic).

Sampling Issues in Point Clouds

Sampling Caused Domain Gap: Sampling in point clouds can cause domain gaps, for example, between
point clouds captured by different - beam LiDARs.

Solutions

Randomly throw away some points in the training data by a dropout layer (as in PointNet++).

Learn to canonicalize the point cloud, such as using a completion network and sparse voxel labeling
network to transform the point cloud to a canonical domain.

Use density - aware convolution like Monte Carlo Convolution.

	3D Vision Computing
	Introduction
	Chapter1 Geometry: Curves&&Surfaces [Lecture 1]
	1.1 Curves
	1.1.1 Parameterization
	Definition
	Application

	1.1.2 2D
	\|T(s)\| \equiv 1
	N(s):= JT(s)
	Frenet Equation
	\mathbb{R}^2 Curve Theorem

	1.1.3 3D
	Osculating Plane
	Curvature \kappa & Torsion \tau
	Frenet Frame
	\mathbb{R}^3 Curve Theorem

	1.1.4 Geometry Meaning

	1.2 Surface
	1.2.1 Surface Parametrization
	f: U \to \mathbb{R}^3
	Saddle Example

	1.2.2 Differentiable Manifold
	Df_p
	Saddle Example-Continue

	1.2.3 Curvature
	N_p
	Cylinder Example

	DN_p
	\mathbf{\kappa}
	Cylinder Example-Continue

	\kappa_1 \kappa_2
	Shape Operator
	Cylinder-example-continue

	1.2.4 First Fundamental Form
	First Claim
	Definition
	Local Isometric Surfaces Example
	Second Fundamental Form

	1.2.6 Gaussian and Mean Curvature

	Chapter2 Representation && Transformation [Lectue 2, 3]
	2.1 Meshes
	2.1.1 Formulation

	
	2.1.2 Storage
	Triangle List
	Indexed Face Set

	2.1.3 Normals
	2.1.4 Curvatures
	2.2 Point Cloud
	2.2.1 Representation
	2.2.2 Application-based Sampling
	(point cloud) Uniform Sampling
	(point cloud) Farthest Point Sampling

	2.2.3 Voxel Down sampling
	2.2.4 Estimating Normals
	Least-square Formulation

	2.3 Implicit Representations
	2.4 Homogeneous Transformation
	2.5 Rotation
	2.5.1 Some Mathematics
	2.5.2 Parameterizing Rotation in NN
	2.5.3 Three kinds of Rotation representations

	Chapter 3 Reconstruction from Multi-view [Lecture 4, 5, 6]
	3.1 Basics [Lecture 4]
	3.1.1 Camera Model: Mapping 3D to 2D
	Conventions
	Intrinsic
	Extrinsic
	Imaging Formula

	3.1.1* Camera Calibration
	3.1.2* Depth Images: 2.5D Representation
	3.1.3 Epipolar Geometry
	Epipolar constraint
	Relating Two Views

	3.2 SfM: Structure from Motion [Lecture 4]
	3.2.1 Overview
	3.2.2 Pipeline
	3.2.3 Related
	3.2.4 Learning Based SfM
	SuperPoint: A Learned Detector and Descriptor
	SuperGlue: context aggregation + matching + filtering

	3.3 MVS: Muti-View Stereo [Lecture 5]
	3.3.1 Overview
	3.3.2 Classical Pipeline
	3.3.3 Learning-based MVS
	MVSNet: A first pipeline
	Improvements

	3.4 NeRF: Neural Radiance Field [Lecture 6]
	3.4.1 Implicit Representation
	3.4.2 Overview
	Volumetric Light Transport Model

	3.4.3 Pipeline
	3.4.4 Extentions
	DNeRF
	PixelNeRF
	DreamDiffusion: Text to 3D synthesis

	3.5 3DGS: 3D Gaussian Splatting
	3.5.1 Overview
	3.5.2 Pipeline
	3.5.3 Comparison with NeRF

	Chapter 4 3D Generation [Lecture 7, 8, 9]
	4.1 Single image to 3D [Lecture 7]
	4.1.1 Overview
	4.1.2 Synthesis-for-Learning Pipeline
	4.1.2 Single-image to Point Cloud
	Pipeline

	4.1.3 Single-image to Mesh
	Editing-based Mesh Modeling
	Summary

	4.2 Surface Reconstruction: Mesh from PC [Lecture 8]
	Explicit Algorithm
	Implicit Algorithms

	4.3 Modern 3D Generation Pipeline [Lecture 9]
	4.3.1 GAN
	2D GAN
	Pipeline
	Issues in 3D GAN

	4.3.2 Autoregressive Models
	2D Autogressive Model
	Pipeline

	4.3.3 Diffusion Models
	2D Diffusion
	Point Cloud Diffusion
	Conditioned Diffusion / Stable Diffusion

	4.3.4 Generation without 3D Training Data
	Pipeline
	Text conditioned 3D Generation

	4.3.5 Part-based 3D Generation
	Semantic-level Synthesis and Assembly
	Hierarchical Generation

	Chapter 5 3D Comprehension [after Lecture 10]
	5.1 3D Backbone [Lecture 10]
	5.1.1 Overview
	5.1.2 Voxel Networks
	5.1.3 Point Networks

