3D Vision Computing

Notes Taking: Alex
Contact: wang-zx23@mails.tsinghua.edu.cn
Instructor: Li Yi

Main Reference: Li Yi 's 3DV Tecture & Hao Su's ML-meets-geometry lecture

3D Vision Computing
Introduction
Chapter1 Geometry: Curves&&Surfaces [Lecture 1]
1.1 Curves
1.1.1 Parameterization
Definition
Application
1.1.22D
IT(s)]| = 1
N(s) := JT(s)
Frenet Equation
R2 Curve Theorem
1.1.33D
Osculating Plane
Curvature k & Torsion 7
Frenet Frame
IR3 Curve Theorem
1.1.4 Geometry Meaning
1.2 Surface
1.2.1 Surface Parametrization
f:U—R3
Saddle Example
1.2.2 Differentiable Manifold
Df,
Saddle Example-Continue
1.2.3 Curvature
Ny
Cylinder Example
DN,
K
Cylinder Example-Continue
K1 K2
Shape Operator
Cylinder-example-continue
1.2.4 First Fundamental Form
First Claim
Definition
Local Isometric Surfaces Example
Second Fundamental Form
1.2.6 Gaussian and Mean Curvature
Chapter2 Representation && Transformation [Lectue 2, 3]
2.1 Meshes
2.1.1 Formulation

2.1.2 Storage
Triangle List
Indexed Face Set

2.1.3 Normals

2.1.4 Curvatures

2.2 Point Cloud

2.2.1 Representation

2.2.2 Application-based Sampling
(point cloud) Uniform Sampling
(point cloud) Farthest Point Sampling

af://n0

2.2.3 Voxel Down sampling
2.2.4 Estimating Normals
Least-square Formulation
2.3 Implicit Representations
2.4 Homogeneous Transformation
2.5 Rotation
2.5.1 Some Mathematics
2.5.2 Parameterizing Rotation in NN
2.5.3 Three kinds of Rotation representations
Chapter 3 Reconstruction from Multi-view [Lecture 4, 5, 6]
3.1 Basics [Lecture 4]
3.1.1 Camera Model: Mapping 3D to 2D
Conventions
Intrinsic
Extrinsic
Imaging Formula
3.1.1* Camera Calibration
3.1.2* Depth Images: 2.5D Representation
3.1.3 Epipolar Geometry
Epipolar constraint
Relating Two Views
3.2 SfM: Structure from Motion [Lecture 4]
3.2.1 Overview
3.2.2 Pipeline
3.2.3 Related
3.2.4 Learning Based SfM
SuperPoint: A Learned Detector and Descriptor
SuperGlue: context aggregation + matching + filtering
3.3 MVS: Muti-View Stereo [Lecture 5]
3.3.1 Overview
3.3.2 Classical Pipeline
3.3.3 Learning-based MVS
MVSNet: A first pipeline
Improvements
3.4 NeRF: Neural Radiance Field [Lecture 6]
3.4.1 Implicit Representation
3.4.2 Overview
Volumetric Light Transport Model
3.4.3 Pipeline
3.4.4 Extentions
DNeRF
PixelNeRF
DreamDiffusion: Text to 3D synthesis
3.5 3DGS: 3D Gaussian Splatting
3.5.1 Overview
3.5.2 Pipeline
3.5.3 Comparison with NeRF
Chapter 4 3D Generation [Lecture 7, 8, 9]
4.1 Single image to 3D [Lecture 7]
4.1.1 Overview
4.1.2 Synthesis-for-Learning Pipeline
4.1.2 Single-image to Point Cloud
Pipeline
4.1.3 Single-image to Mesh
Editing-based Mesh Modeling
Summary
4.2 Surface Reconstruction: Mesh from PC [Lecture 8]
Explicit Algorithm
Implicit Algorithms
4.3 Modern 3D Generation Pipeline [Lecture 9]
4.3.1 GAN
2D GAN
Pipeline
Issues in 3D GAN
4.3.2 Autoregressive Models

2D Autogressive Model
Pipeline
4.3.3 Diffusion Models
2D Diffusion
Point Cloud Diffusion
Conditioned Diffusion / Stable Diffusion
4.3.4 Generation without 3D Training Data
Pipeline
Text conditioned 3D Generation
4.3.5 Part-based 3D Generation
Semantic-level Synthesis and Assembly
Hierarchical Generation

Chapter 5 3D Comprehension [after Lecture 10]

5.1 3D Backbone [Lecture 10]
5.1.1 Overview
5.1.2 Voxel Networks
5.1.3 Point Networks

Introduction

Geometry understanding is very important in Robotics, Augmented Reality Autonomous driving and Medical Image
Processing. From geometry understanding the robot can get a priori knowledge of the 3D world.

Geometry theories — Curves, Surface, Rotation -+

Sensing: Computer Representation of Geometries — Mesh, Point, -

Sensing: 3D reconstruction from a single image —

Geometry Processing: Local geometric property estimation, Surface reconstruction

Recognition: Object classification, Object detection, 6D pose estimation, Segmentation,Human pose estimation

Relationship Analysis: Shape correspondences

Chapter1 Geometry: Curves&&Surfaces [Lecture 1]

This Chapter mainly focus on the basic concepts, definition and math property about 3D geometry.

1.1 Curves

1.1.1 Parameterization

Definition

A parameterized curve is a map from a 1-dimensional region to R™ .

2d curve: y(t) = (z(t),y(t))
Intuition: A particle moving in space with position y(¢) at time ¢.

Use parameterized methods to represent a curve.

3d curve: y(t) = (z(t),y(t), 2(t))|R — R®: t — p(t)

e p(t) = r(cos(t), sin(t)), te<[0,2m)

Application

Bezier Curves, Splines:

af://n8
af://n23
af://n26
af://n27
af://n28
af://n39

s(t) = > pBI)
=0

A curve is just like One-dimensional “Manifold", Set of points that locally looks like a line. (however when a cusp
occured things becomes extremely complex)

* Tangent Vector:
(1) = ('(t),y/(t) € R?
Example: For y(¢) = (cos(t), sin(t)),
7'(t) = (= sin(t), cos(t))
o 4'(t) indicates the direction of movement.
o ||+'(t)|| indicates the speed of movement.
e Arclength
L2 Il @)t
e Parameterization by Arc Length
s(t) = [y |17/ (8)]|dt
t(s) = inverse function of s(t)

Y(s) = (t(s))

1.1.22D

Theorem
Define Tangent vector T'(s) = v'(s), = || T(s)||=1
IT(s)]| =1

Proof: By definition.

S(t) = [| (2)]at

=l
T(s) = ') = 2 = |F] - 1] = @
o) =0 & =% = T

Thus, | T(s)|| = 1201 — 4

af://n57
af://n61

N(s) :=JT(s)

Define Normal vector N (s) where J is the rotation matrix of 90° in 2D space.
0 -1
J pu—
1 0
We have the definition of the normal vector: N(s) := JT'(s).

Frenet Equation

Theorem

Proof: By [|[T'(s)|| = 1 and 4 < u,v >= v+ %u

Now, let's derive the Frenet equations: We know that T'(s) is a unit tangent vector, meaning |T'(s)| = 1, which implies
that (T'(s), T(s)) = 1. When we differentiate (T'(s),T(s)> = 1 with respect to s, we get: (45, T') + (T, 4L) = 0
= 2(4L T) = 0= (4L T) = 0 This shows that 4L is orthogonal to T'. Since ‘;—T is orthogonal to T', and in a 2D
plane, the only orthogonal direction is along the normal vector N, we can write & = k(s)N(s), where k() is the
curvature. For the normal vector N(s) = JT'(s), when we differentiate, we get:

4N — J49T — J(k(s)N(s)) = K(s)JN(s) Since N(s) = JT(s), we have JN(s) = J(JT(s)) = J*T(s).

T AR O

Computing J%:
Therefore, JN(s) = J2T(s) = —T(s) . Substituting back: ‘il—];’ = k(s)JN(s) = —k(s)T(s)

In summary, we have derived: 4= = k(s)N(s) 4% = —k(s)T(s) These equations can be expressed in matrix form:
d [T(s)] [0 k(s)] [T(s)
ds |[N(s)] |—rw(s) 0 | |N(s)

Thoughts: Use the geometry self-coordinates to describe the shape of itself.
R? Curve Theorem

Radius of Curvature is defined as /-t(s) = % , R is the radius of curvature. The geometry meaning indicated how
much the normal changes in the direction tangent to the curve. Or curvature x(s) characterizes a planar curve up
to rigid motion, which is always positive.

1.1.33D
Osculating Plane

The plane determined by T'(s) and N (s). And we define the the Binormal Vector B(s) = T'(s) x N(s) Curvature
and Torsion

Curvature x & Torsion 7
Definition

< N'(s),T(s) >= —k(s) < N'(s),B(s) >=7(s)
Theorem

T'(s) = w(s)N(s) N'(s) = —r(s)T(s) + 7(s)B(s) B'(s) = —7(s)N(s)
Proof

For the first equation, we know that T'(s) is a unit vector, so ||T'(s)|| = 1. Differentiating (T'(s), T'(s)) = 1 with
respect to s:

(T'(s), T(s)) + (T(s
= 2(T"(s),T(s)) =
= (T"(s),T(s)) =

),T'(s)) =0
0

af://n69
af://n73
af://n86
af://n88
af://n89
af://n91

This shows that T"(s) is orthogonal to T'(s). Since {T', N, B} forms an orthonormal basis, T"(s) must lie in the
plane spanned by N and B:

T'(s) = aN(s) + BB(s)

To find a and 3, we compute:

(T'(s), N(s)) = a(N(s), N(s)) + B(B(s), N(s)) = - 1+ -0 = cx

By definition, o = k(s). Also:

(T'(s), B(s)) = a(N(s), B(s)) + B(B(s), B(s)) =a-0+8-1=p

Since T, N, and B form a right-handed orthonormal basis, (I"'(s), B(s)) = 0, thus 8 = 0.

Therefore, T'(s) = k(s)N(s).

For the second equation, we know that {T", N, B} is an orthonormal basis, so N'(s) can be expressed as:
N'(s) = aT(s) + bN(s) 4+ cB(s)

Since (N (s),)) = 1, differentiating gives:

N(s
(N'(s), N(s)) + (N(s), N'(s)) = 0
2(N'(s),N(s)) =0

=b=0

From (N(s),T(s)) = 0, differentiating:

(N'(s), T(s)) + (N(s),T'(s)) = 0

= (N'(s), T(s)) + (N(s), k(s)N(s)) = 0

= (N'(s),T(s)) + k(s) =0

= a = —k(s)

By definition, (N'(s), B(s)) = 7(s), thus ¢ = 7(s).

Therefore, N'(s) = —k(s)T'(s) + 7(s)B(s).

For the third equation, since B =T x N, differentiating:

B'(s) = T'(s) x N(s) + T(s) x N'(s)

= K(s)N(s) x N(s) + T(s) x (—r(s)T(s) + 7(s)B(s))
=04 (=r(s))(T(s) x T(s)) + 7(s)(T(s) x B(s))
=0+0+ (s)(s) x B(s))

Since {T', N, B} is a right-handed orthonormal basis, T’ x B = —N. Thus:
B'(s) = 7(s)(—=N(s)) = —7(s)N(s)

Thoughts

Curvature indicates how much the normal changes in the direction tangent to the curve. (Indicates in-plane motion.)
Torsion indicates how much normal changes in the direction orthogonal to the osculating plane of the curve.
(Indicates out-of-plane motion.) Curvature is always positive but torsion can be negative

Frenet Frame

Theorem:
d T 0 k 0 T
—I|IN|=|-&% 0 N
ds
B 0O —7 0 B

Proof: By the relations above.
R3 Curve Theorem

Curvature k(s) and torsion 7(s) characterize a 3D curve up to rigid motion.

1.1.4 Geometry Meaning

A curve is defined as a map from an interval to R™ The tangent vector to the curve describes the direction of
motion along the curve. When the curve is parameterized by arc-length, the derivative of the tangent vector is the
normal vector. Both curvature and torsion are measures that describe the change in the normal direction of the
curve. Curvature quantifies how much the normal vector changes in the direction tangent to the curve, while torsion
quantifies how much the normal vector changes in the direction orthogonal to the osculating plane of the

af://n114
af://n120
af://n122

curve. Curvature is always positive, indicating the rate of bending, whereas torsion can be negative, indicating
twisting. Together, curvature and torsion uniquely describe the shape of a curve, up to rigid transformations. The
tangent, normal, and binormal vectors together form a moving frame, known as the Frenet frame, which provides a
local coordinate system that moves along the curve.

1.2 Surface

1.2.1 Surface Parametrization
f:U—R3

e Aparameterized surface is a map from a two-dimensional region U C R?to R™.

IRT!

v o

[| 3=

o The set of points f(U) is called the image of the parameterization

Saddle Example

U :={(u,v) € R? : u? + 0> < 1}

fu,v) = [u,v, u? — vz}T

af://n124
af://n125
af://n126
af://n134

1.2.2 Differentiable Manifold
Inspiration
e Things that can be discovered by local observation: point + neighborhood.
Properties

e Local Properties: properties that can be discovered by local observation (points + neighborhoods).

e Smoothness: a continuous one-to-one mapping from local to global.

e Tangent Plane: each point can have a tangent plane attached to it, which contains all possible directions passing
tangentially from that point, defined as T},(IR®)

Df,
Differential of a Surface D f), : Tp(Rz) = Typ) (RS)

e Relate the movement of point in the domain and on the surface.

df = Lau+ Lav

U

e Ifthe point p € R? is moving along the vector X = [u, v}T with velocity €, the motion of the point f(p) on the
surface is:

Q

u
0 0 of 0
Af, B_QJ:(GU) + a—i(ev) =€ [3—f, 8—5} =€e[Dfp|X

Df,:= [%, %} € R**2 is a linear mapping that maps tangent vectors in the parameter domain to tangent

vectors in space, where X is the velocity in the 2D domain, and the [D fp] X is the velocity in the 3D space.

af://n137
af://n152

ft)

Thought

e Intuitively, the differential of a parameterized surface tells us how tangent vectors on the domain get mapped to
tangent vectors in space. w.r.t, Maps a vector in the tangent space of the domain to the tangent space of the

surface.

e Tells us the velocity of point in 3D when the parameter

changes in 2D.

e Allows us to construct the bases of tangent plane.

Saddle Example-Continue

_ UZ)

—
A

X(0,0)

af://n171

f(u,v) = [u,v,u® — 7T
af of
P o 1 0
Df,= % 221 =0 1
Ofs Ofs 2u —2v
ou v
311 3 !
Xi=2 DFX)=>| -1
41-1 4
2(u+v)

e.g. for (u,v) = (0,0) Df(X) = [%, %,0]
(1,1,0

e.g. for p = (u,v) = (1,1), f(p) = (1,1,0)

1 0
Tfp)(R®) = spanof |0 1
2 -1
1.2.3 Curvature
Ny
Definition
u X v
N(u, v) = M
| fu X foll
of of
h == fy=—=
where f, ™ f e
Cylinder Example
f(u,v) := [cos(u),sin(u),u + v]T
—sin(u) 0
Df(uw) = | cos(u) 0
1
—sin(u 0 cos(u)
N(u,v) cos(u) x |0 = |sin(u)
1 1
Calculate Normal on a surface Local change of normal

DfX,) ¥

'f\ = X

Local change

Assume g moves along a curve 7y parameterized by arclength ¢ = 7(s):, and the normal is N () with unit norm. From
d% < N(s),N(s) >= 0.We know that the local change of normal is always in the tangent plane!

af://n174
af://n175
af://n179

DN,

~= ~=

ON ON
dN = —du+ —d
au i o '
If point p € R?moves with velocity

X by €, the movement of N, :

ON ON u
AN, = %(eu) + W(ev) =€ [%—Jx, %—JX] LJ = e[DN,| X
DN, := [%_]X’ %_JX] e R¥

DN, X
Let | Dfy[pX]|| = 1 p = HD]}PXH thus DN, [pX] = [Dfp X1

K

Definition

DN, X
Vector & = DN, [uX] = 5757

Principal Curvatures
< Dfp,X,DNp,X >
IDfp X112

.~ tangent plane

N o o o o o oo ow W

Kp =< T,k >=

Geodesic curvature

kg =<K, N xT >

af://n191
af://n195

Cylinder Example-Continue

Calculte .,

Fig. 3

Cylinder
—sin(u) 0]
Df,= | cos(u) 0
1 1]
— sin(u) 0 [cos(u)
N, = | cos(u) | x [0 = [sin(u)
1 1 | o
—sin(u) 0
DN, = | cos(u) 0
0 0 ‘f\
[0y (DA DN(XY)
o= [i) = e o
1 . _ (Df(X3), DN(X3)) _
xo=] mir = HATEET

K1 K2

Definition

e The direction that bends fastest / slowest are principal directions, which are orthogonal to each other.

Visualization

Maximum curvature kK1 = Kpaxy = max kp(P),
]

¢1 — Principle directure 1

Minimun curvature ks = Kpin = min £, (@)
]

¢2 — Principle directure 2

min curvature && max curvature

Theorem

The principal directions are always orthogonal.

Proof

af://n208
af://n216

Consider the shape operator (Weingarten mapping) S : Tp,(M) — T, (M), which can be expressed as:

Sp(X) = —DN,(X) where DN, is the normal vector differential. The shape operator is self-adjoint, i.e., for any
tangent vectors X, Y € T,(M): (Sp(X),Y) = (X, Sp(Y)). The principal curvatures k1, k2 are the eigenvalues of
the shape operator S, and the corresponding principal directions ¢1, @2 are its eigenvectors: S,,(¢1) = K11
Sp(¢2) = Ky¢s. Since S, is self-concomitant, when k1 # K9, the corresponding eigenvectors are necessarily
orthogonal. The proof is as follows: (Sp(¢1), ¢2) = (k1d1, P2) = K1(P1, ¢2) Simultaneous:

(91, 5p(92)) = (#1, Kap2) = K2(d1, P2) By the self-concomitant property: (S(¢1), ¢2) = (1, Sp(92)), thus:
K1(¢1, $2) = K2(P1, P2) (K1 — K2) (1, P2) =0

planes
of principal
curvatures

normal

/ vector
i |

tangent
plane

Theorem: Euler's Theorem:
Planes of principal curvature are orthogonal and independent of parameterization.
Kn(¢) = k1 cos® ¢ + Kkysin® ¢
Shape Operator
Definition

o The shape operator S'is a linear map that relates the change in the normal vector to the change in the surface
point. DN,,(X)and D f,,(X) are both in the tangent plane. Therefore, the column space of DN,jis a subspace of
the column space of D f),.

35 € R*? suchthat DN, = Df,S
This implies: VX € T,(R?), [DN,]X = [Df,]SX
e Actually, S is the "Normal Change Prediction Operator"”, When a point p moves along a direction SX, the

normal change vector d € R3. S can represent some information about the normal of the surface. Actually, this
linear mapS predicts the normal change when p moves along any direction.

Computation of Principal Directions
S has some super cool properties:

e The principal directions are the eigenvectors of the shape operator S
e The principal curvatures are the eigenvalues of .S

e Note: The shape operator S'is a linear map that relates the change in the normal vector to the change in the
surface point.

af://n249

Cylinder-example-continue

f(u,v) = [cos(u),sin(u),u + v]T
—sin(u) 0
Df = | cos(u) O|N = [cos(u),sin(u),0]”

1 1

—sin(u) 0

DN = | cos(u) 0

0 0

X = m Kin(X1) = 0

1 0
To verify the eigenvalues ofS : DN, = Df,S = § = [1 0]

1.2.4 First Fundamental Form
First Claim

Curvature completely determines local surface geometry. However, it is insufficient to determine surface globally. See
this below as an example: Jfandf* curvature value and directions are the same for any pair

(f(p), f*(p)),Vp € U.
-+

Other than measuring how the surface bends, we should also measure length and angle.

Inspiration

Definition

The first fundamental form I, is defined as the inner product in the tangent space TP(R?’).
I(X,Y) = (Df,X,DfpY) where X,Y € Tp(]R2). I(X,)Y) = XT(ngDfp)Y

This form I, is dependent on both the surface f and the point p.

o Arc-length by I(X,Y) : The arc-length of a curve on the surface can be determined using the first fundamental
form.

o Velocity of a Point:
= Suppose a pointp € U moves with velocity X (t).

= The curve on the surface is given by:
Y(t) = F(p(t) = flpo + f X(£)dt)
= The derivative of the curve is:
7'(t) = Dfp(t)[X(2)]

af://n269
af://n271
af://n272
af://n278

= The arc-length s(t) is:

s(t) = /O I (8) ld

_ /0 V (DF,()X(t), Df,(£)X (1)) dt

_ /0 t VI ()X (1), X(t))dt

e With I, we have completely determined curve length within the surface without referring to f

Local Isometric Surfaces Example

(a) Cylinder (b) Cone
Two surfaces M and M * are locally isometric if there exist parameterizations f and f* such that the first
fundamental forms are equal.
f(u,v) = [u,v,0T and f*(u,v) = [cosu,sinu,v]T
onU = {(u,v) : uw € (0,2m),v € (0,1)}.
Proof:

For the plane parameterization f(u,v) = [u,v,0]%:

10
Df,= [0 1
00

Computing the first fundamental form matrix:

10 0 1 0
ngDf”:[o 1 0] 01 :[0 1]

00
For the cylinder parameterization f*(u,v) = [cos u, sinu, v] "
—sinu 0
Dfy = | cosu 0
0 1
Computing the first fundamental form matrix:
. 0 —sinu 0 . 5 0 10
—sinu cosu
Df;TDf;: cosu 0l = sin” u + cos” u _
0 0 1 0 1 0 1 0 1

Since sin® u + cos?u = 1, we have:

1 0
Diinf, = D5;Ds = [y |

Therefore, the first fundamental forms of the plane and cylinder are identical:
I,(X,Y) = XT(Df'Df,)Y = XT(Df;"Df;)Y = I;(X,Y)

This proves that the plane and cylinder are locally isometric. Intuitively, this makes sense because we can roll a plane
into a cylinder without stretching or tearing, preserving all distances and angles.

Here are some applications of first form.

e Shape Classification by Isometry

af://n300

Intrinsically
far

Extrinsically
close

e Distance Distribution Descriptor

Compute distribution of distances for point pairs by randomly picked on the surface

Centaur

B L_ﬂ‘
B A
LY N

Waoalf

¥
L 4
mu

Vlctorla

e The angle between two vectors on the surface can be determined using the first fundamental form.

(DfpX,Df,Y) I(X,Y)
DFLXNIDAYT — JIXX)I(Y,Y)

cos ¢ =

With I, we have completely determined angles within the surface without referring to f
Second Fundamental Form
II(X,Y) = (DN, X,Df,Y)
Theorem

A smooth surface is determined up to rigid motion by its first and second fundamental forms.
1.2.6 Gaussian and Mean Curvature
Definition

e Gaussian Curvature:
K = Ki1K2

e Mean Curvature:
H .= %(Fil —+ Hg)

Theorem

Gaussian and mean curvature also fully describe local bending.

af://n332
af://n337

K>0 “developable” K =0 K <0
H#0 H=#0 ‘minimal” H =0

Gauss's Theorema Egregium
The Gaussian curvature of an embedded smooth surface in R3is invariant under the local isometries.
Thought

Locally Isometric Surfaces are invariant measured by Gaussian curvature. Gaussian curvatures are vulnerable to
noises in practice and not informative. Needed for more robust surface analysis.

Chapter2 Representation && Transformation [Lectue 2, 3]

This chapter mainly focuses on 3D representations and transformations, including mesh, point cloud and
implicit representation methods.

Other than parametric representations, we use rasterized form(regular grids), including multi-view representation,
depth map, volumetric. And also use irregular geometric form like mesh, point cloud and implicit shape
methods(use F'(z) = 0 to represent the geometry of the surface).

af://n355

2.1 Meshes

2.1.1 Formulation

Mesh formulation can be seen as manifold condition plus a set of :
V = {v1,v9,...,v,} C R®

E={ej,ez,...,ex} CV XV
F={f1,f2,-- s fm} SV XV XV

Manifold condition of discrete mesh is defined as:

1. Each edge is incident to one or two faces.

2. Faces incident to a vertex form a closed or open fan.

Polygonal meshes are piece-wise linear approximation of smooth surfaces. Assume the situation of that you want to
map points to real numbers, a.k.a you want to storage scalar on surface,(f(mesh) — R) there exists problem that
the scale of the mesh triangle is very important. Why is Meshing an Issue?

Interpreting one value per vertex can be challenging, especially when storing scalar functions on the surface.

So good triangulation is important (manifold, equi-length). While real-data 3D are often point clouds, meshes are quite
often used to visualize 3D and generate ground truth for machine learning algorithms. Non-manifold edges violate the
manifold conditions, leading to topological inconsistencies. "Triangle Soup" is a collection of triangles without any
connectivity information, meshes with non-uniform areas and angles can lead to poor quality and interpretation
issues. Cleaning, repairing and remeshing are techniques to improve mesh quality.

af://n359
af://n361
af://n374

Ex: Taylor’'s
) Theorem
_\ >

) /
(1) P f(t+h)

2.1.2 Storage

The geometry(3D coordinates), Topology, Normal, color, texture coordinates, Per vertex, face, edge all should be
contained in the mesh information(?)

Triangle List

e STL format: Used in CAD.
e Storage: Each face is stored with 3 positions.

¢ No connectivity information.
Indexed Face Set

e Formats: OBJ, OFF, WRL.
e Storage:

o Vertex: Position

o Face: Vertex indices

o Convention: Save vertices in counterclockwise order for normal computation.

2.1.3 Normals

Normal can be computed using various methods, including the right-hand rule and cross products. By indicating the
normal continuity surface can be divided into orientable that have a consistent normal direction. Otherwise non-
orientable: Surfaces like the M&bius strip.

2.1.4 Curvatures

Rusinkiewicz's Method
An effective approach for face curvature estimation:

e Assume a local frame at a small triangle.
e Assume that normals are roughly parallel.

¢ Solve for the shape operator S using least squares.

Assume a local f: U — R3 at a small triangle, T}, 's are roughly parallel, and Dflu v] = ugu + vE,,, ie.,

Df = [Eu, Ev] Recall the shape operator DN = Df - S,s0.S = DfTDN. (This is because we can choose the D f to
be orthogonal). By approximating DfT(DN[u v]) ~ DfTAFL, we can set up a system of equations. Solving the
least - square problem (6 equations and 4 unknowns) gives S € R2*2, from which principal curvatures can be
computed. This method is effective for face curvature estimation, robust to moderate noise, and can be used for point
clouds as well .

af://n374
af://n375
af://n377
af://n385
af://n398
af://n400

2.2 Point Cloud

2.2.1 Representation

A point cloud is a set of points in 3D space, representing the surface of an object.

e From the real world:

o 3D scanning techniques (LIDAR, Kinect, Stereo).

o Challenges: Resolution, occlusion, noise, registration.
e From existing virtual shapes:

o Lightweight shape representation.

o Compact storage and easy to build algorithms.

2.2.2 Application-based Sampling

e Storage or analysis purposes:
o Preserve surface information.
e Learning data generation:

o Minimize virtual-real domain gap.
(point cloud) Uniform Sampling

e Independent identically distributed (i.i.d.) samples by surface area, and usually the easiest to implement

e [ssue: Irregularly spaced sampling.

af://n411
af://n412
af://n429
af://n441

(point cloud) Farthest Point Sampling
e Goal: Sampled points are far away from each other.
e NP-hard problem.

e Greedy approximation method.

Iterative Furthest Point Sampling

e Step 1: Over-sample the shape by any fast method.

e Step 2: Iteratively select K points.

U is the initial big set of points
S5=1{}

add a random point from U to §

fori=1to K
find a point u € U with the largest distance to S
add uto S

def fps_downsample(peints, number_ of points_to_sample):
selected points = np.zeros((number of points_ to_sample, 3))
dist = np.ones(points.shape[0]) * np.inf # distance to the selected set
for i in rangs(number of points_to_samplse):
pick the point with max dist
idx = np.argmax(dist)
selected points[i] = points[idx]
dist = ((points - selected points[i]) ** 2).sum(-1)
dist = np.minimum(dist, dist)

return selected points

Issues Relevant to Speed
o Naive implementation complexity: O(KN).
e Optimization techniques:
o CPU: Vectorization (numpy, scipy.spatial.distance.cdist).

o GPU: Shared memory, complexity reduced to O(K (N /M + log M)).

Implementation Tricks

af://n448

e References for GPU implementations:
© mvpnet

o Pointnet2 PyTorch

2.2.3 Voxel Down sampling

e Uses a regular voxel grid to downsample.
e Allows higher parallelization.

e Generates regularly spaced sampling.
Issues Relevant to Speed

e Mapping each point to a bin.
e Complexity: O(N).

Dictionary-based Implementation in Numpy

def voxel_downsample(points: np.ndarray, voxel_size: float):

points_downsampled = dict()
points_voxel_coords = (points / voxel_size).astype(int)
for point_idx, voxel_coord in enumerate(points_voxel_coords):

key = tuple(voxel_coord.tolist())

if key not in points_downsampled:

points_downsampled[key] = points[point_idx]

points_downsampled = np.array(list(points_downsampled.values()))
return points_downsampled

Unique-based Implementation in Torch

def voxel_downsample_torch(points: torch.Tensor, voxel_size: float):
points = torch.as_tensor(points, dtype=torch.float32)
points_voxel_coords = (points / voxel_size).Tlong()
unique_voxel_coords, points_voxel_indices, count_voxel_coords = torch.unique(
points_voxel_coords, return_inverse=True, return_counts=True, dim=0
)
M = unique_voxel_coords.size(0)
points_downsampled = points.new_zeros([M, 3])
points_downsampled.scatter_add_(
dim=0, index=points_voxel_indices.unsqueeze(-1).expand(-1, 3), src=points
)
points_downsampled = points_downsampled / count_voxel_coords.unsqueeze(-1)
return points_downsampled

2.2.4 Estimating Normals

¢ Plane-fitting: Find the plane that best fits the neighborhood of a point of interest.
Least-square Formulation

o Assume the plane equation is w” (z — ¢) = 0 with ||w|| = 1.

e Solve the least square problem:

minz |wT (z; —c)||? subject to |w|* =1
w,c 7

e Solution:
o LetM=>.(z; —Z)(z; —z)T and & = % >

o w is the smallest eigenvector of M.

o ¢c=wTz.

https://github.com/maxjaritz/mvpnet/blob/master/mvpnet/ops/cuda/fps_kernel.cu
https://github.com/erikwijmans/Pointnet2_PyTorch/blob/master/pointnet2_ops_lib/pointnet2_ops/_extsrc/src/sampling_gpu.cu
af://n489
af://n510
af://n514

Normal can be computed through PCA over a local neighborhood. And the choice of neighborhood size is important.

RANSAC can improve quality in the presence of outliers.

2.3 Implicit Representations

In explicit representations of geometry, all points are given directly, genrally can be represented as

f:R? = R3; (u,v) — (z,, 2). In the explicit representations points sampling is quite easy which make some tasks

easy. However for the task that distinguish something inside or outside of the surface, we can turn to the implicit
representations of geometry.

e How to constructive solid geometry: We can combine implicit geometry via Boolean operations.

@(XOY)\(UUVUW)
Boolean expressions : P <&
/n\ £ O\
9 o /-t\
X Y U s
< 0
1% w

e Distance functions: giving minimum distance (could be signed distance) from anywhere to object. Instead of
booleans, gradually blend surfaces together using distance functions.

céffeeeeec
a PP Poe

e There are no “best” geometric representation !

More details about implicit representation will be given in chapter4.1.3 NerF. The remain of this chapter

focuses on the transformation and rotation of 3D objects.

2.4 Homogeneous Transformation

Rigid Transformations and Homogeneous Coordinates

e Degrees of Freedom DoF: Degree of freedom, representing the number of independent parameters required to

describe a transformation.

af://n532
af://n546

Arigid transformation can be described using a pair (RHb, ts_,b), where:

e R, ,;isthe rotation matrix.

e t, ., isthe translation vector.
We use F, to denote the coordinate frame. For example:
e The origin of frame b in frame s is given by:
0p = 05 Tt
e Apoint xp in frame b is transformed to frame s as:

(23, -] = R3]

Combining these, the relationship between points in frames s and b is:
p° = Riabpb + ti*}b
The transformation is non-linear due to the translation component. For example:
p5 = Rzabpg + tiab
pi+ps# R, (p]+p5) +t, when ti,,#0
e Homogeneous Coordinates
To represent translations as linear transformations, we use homogeneous coordinates:
& =[z,1]T e R?
e Homogeneous Transformation Matrix

s i .
", is defined as:

s Rzﬁb tzab
0 1

The homogeneous transformation matrix 7';

s—b —

e Linear Form of Coordinate Transformation

Using homogeneous coordinates, the transformation can be written in linear form:

~b

P =T? .2

S
s—b
For a general notation, we can write:

&l =Ty 2"

The transformation between two coordinate systems is related by the inverse of the transformation matrix:

Ty = (T})"

e Visualizing 2D Transformations in 2D-H

P
D ,

&
T

Original shape in 2D can be viewed as 2D rotation + rotate around w
many copies, uniformly scaled by w.

2D scale « scale xand y; preserve w

(Question: what happens to 2D shape 2D translate « sheIar in2D-H
if you scale x, y, and w uniformly?) (LINEAR!)
e Scaling
s, 0 0 0
g |0 s 00
° 0 0 s, 0
0 0 0 1
e Reflection
R =Ty BnT"p,
1 0 0 = 1—2a®> —2ab —2ac 0 1 0 0 —=z¢
010 —2ab 1-2b2 —2bc 0 010 —
T,, = yo, R, = a C R Yo
0 0 1 =z —2ac —2bc 1-2¢* 0 0 0 1 —z
000 1 0 0 0 1 000 1
e Translation
10 0 ¢t
01 0 ¢t
T, = Y
00 1 t,
00 0 1
e Rotation
cosf —sinf 0 O
sinf cos® 0 0
R.(0) =
(6) 0 0 10
0 0 01

2.5 Rotation

2.5.1 Some Mathematics

The set of rotations in n-dimensional space is defined by the Special Orthogonal Group SO(n), which consists of all
n X n orthogonal matrices with determinant 1:

S0(n) = {R € R™" : det(R) = 1, RRT = I}
This group is significant because:

e Group: It forms a group under matrix multiplication.
e Orthogonal: Matrices satisfy RRT =1T.

e Special: The determinant of each matrix is 1.
Specific cases include:

e SO(2): 2D rotations, with 1 degree of freedom (DoF).
e SO(3): 3D rotations, with 3 degrees of freedom (DoF).

Topology of SO(n)
The topology of SO(n) is crucial for understanding its properties:

e SO(2) has the same topology as a circle, indicating it is a one-dimensional manifold.

A o

L
\
-1 1

e SO(3) has a different topology from (—1, 1)™, which is significant because:

o Circles do not have the same topology as (—1,1)", meaning there are no differentiable bijections between
SO(2) and (—1,1)™.

o This difference affects how rotations can be parameterized and used in computational models.
2.5.2 Parameterizing Rotation in NN

When using rotations in neural networks, ideal parameterizations should:

1. Map from (—1,)" (as network output) to SO(2).
2. Be a differentiable bijection.
However, challenges arise when:

e Input data points are close, but their corresponding 8 predictions are far apart after convergence. Since the
network is a continuous function, it may make inaccurate predictions between these points.

e Special network designs are needed to handle these issues effectively.

- If input data points to network are

Otherwise: close, but the & predictions happen
to be far after convergence, the
“ AQ f network (a continuous function) will
-] make awful predictions between the
near g4 far R two data points !
“q v f f . .
0 - Need special network design to

overcome the issue

af://n610
af://n611
af://n643

2.5.3 Three kinds of Rotation representations

e Euler Angles

Euler angles are a way to represent 3D rotations using three angles. These angles represent rotations about the
principal axes (z, y, z). The rotation matrix for Euler angles (a, 3,) is given by:

R = R.(7)Ry(B)Rs()

where:
1 0 0 cosB 0 sinf cosy —siny 0
R,(a) =10 cosa —sina|, Ry (8)= 0 1 0 |, R.(y)=|siny cosy O
0 sina cosa —sinf 0 cospf 0 0 1

Euler angles provide an intuitive way to represent rotations but suffer from gimbal lock.

(1) Non-uniqueness in representation.
R (45°)R(90°)R (45°) = R.(90°)R (90°)R,(90")

0 01
0 10
-1 00

(2) Loss of a degree of freedom under certain conditions, making it impossible to distinguish between certain

rotations. Eg: for f = /2

R= R(R (PR @)
0 0 1

= | sinfe+y) cos(a+y) O
—cos(a+y) sin(a+y) O

Since changing and has the same effects, a degree of freedom disappears.
e Axis-Angle Representation

Euler Theorem: Any rotation in the special orthogonal group SO(3) can be represented as a rotation about a
fixed axis @ € R? through a positive angle 6

@ denotes the unit vector of the rotation axis, ensuring that ||@| = 1, and @ is the angle of rotation. This relationship
can be mathematically expressed as R € SO(3) := Rot(®,). Given a unit vector w and an angle §, determining the
corresponding rotation matrix R € SO(3) involves understanding the dynamics of point rotation around the
specified axis. Consider a point g. At time ¢t = 0, its position is gg. Rotating g with a unit angular velocity around axis @
can be described by the equations:

4(t) = @ x q(t) = [@]q(¢)
This leads to the solution of the ordinary differential equation (ODE) being ¢(t) = e/“I*qq. Given that ||&|| = 1, the
swept angle @ is equivalent to t, i.e., @ = ||t|| = t. Consequently, the position at time @is g(§) = el*’qq, and the
(]

rotation matrix can be expressed as Rot(@, 0) = e 9 which is known as the exponential map. The exponential map

can be further elaborated using the definition of matrix exponential:

] 0 2 s
e :I+0[w}+g[w} +¥[w] +oeee

The sum of this infinite series can be simplified using the Rodrigues formula, which leverages the fact that
[@]3 = —[@]. By applying the Taylor expansion of sine and cosine, the formula becomes:

el — I+ [@]sin 6 + [@](1 — cos)

where [w] is represented as a skew-symmetric matrix:

af://n657

W] = | w, 0 —w,

—Wy Wg 0

The parameterization of rotations is not unique. For instance, (&, §) and (—&, —6) yield the same rotation. Moreover,
when R = I,0 = 0, and @ can be arbitrary. However, under the restriction that @ € (0, 7] and tr(R) # —1, a unique
parameterization exists.

Rotation Matrix to Axis-Angle

The angle 0 can be computed by
1
0 = arccos E[tr(R) —1]

and the skew-symmetric matrix [&] can be derived as

1
D) = R — RT) when tr(R) # —1
(6] = 5= (R — R") when tx(R) #
In cases where tr(R) = —1, 8 = m, corresponding to rotations around the x, y, or z axis by 7.

Rotations distance in SO(3)

How to measure the distance between two rotations, represented by matrices R; and Ry in the special orthogonal
group SO(3)?

To measure the distance between two rotations, a natural approach is to quantify the minimal effort required to
rotate one body from the pose described by R; to the pose described by Rs. This can be mathematically formulated
by considering the rotation matrix Rng, which represents the relative rotation from R to Rs. The distance
between these rotations is given by the angle 8 of this relative rotation, which can be computed using the formula:

1
dist(R1, Ry) = O(RyRT) = arccos E[tr(RzRf) —1]

This formula arises from the properties of rotation matrices and the relationship between the trace of a matrix and
the cosine of the rotation angle.

From a learning perspective, particularly when these rotations are parameterized and used within neural networks, a
significant challenge emerges. Suppose we are estimating a rotation represented as a 3D vector O, where @ is a unit
vector and @ is the angle of rotation. To maintain a unique parameterization, it's assumed that 6 € (0, 7r]. However, if
the current solution is 7@, then (7 — €)(—&) maps to a nearby point in SO(3) but not within the neighborhood of
the domain, causing issues for gradient descent optimization methods. This discrepancy highlights the need for
special network designs that can effectively handle such scenarios.

e Quaternion Representation

Quaternions are a four-dimensional extension of complex numbers and can be used to represent 3D rotations.A
quaternion g is defined as ¢ = w + x¢ + yj + zk, where w is the real part and (z, y, z) form the imaginary part. The
imaginary units 4, §, k satisfy the following anti-commutative properties: i> = j2 = k? = ijk = —1,1j = k = —ji,
jk=1= —kjand ki = j = —ik.

q=w+ zi +yj+ zk

The product of two quaternions ¢; = (w1, v1) and g2 = (wa, v3) is given by

4192 = (wywq — va% w1Vy + wavy + V1 X Va). The conjugate of a quaternion ¢ is defined as ¢* = (w, —v),
and its norm is ||q||? = w? + vI'v = q¢* = q*q. The inverse of a quaternionis ¢! = HZ‘*IQ)

A unit quaternion can represent a rotation in 3D space. Geometrically, it can be thought of as the shell of a 4D sphere.
To rotate a vector x by a quaternion g, the vector is first augmented to a quaternion x’ = (0,x), and then the
rotation is performed as x’ = gxq~'. Composing rotations using quaternions is straightforward: if a vector is first

rotated by q; and then by g, the combined rotation can be represented as g2q1, since
(g2(q1%q7)g3) = (q291)%(q13)-

Quaternion to Rotation Matrix
Quaternions can also be converted to and from rotation matrices. Given a quaternion g, the corresponding rotation

matrix R(q) can be computed as R(q) = E(q)G(q)T, where E(q) = [—v,wI + [v]«] and
G(q) = [-v,wI — [v]«]. Here, [v]« denotes the skew-symmetric matrix of v.

Where (w, z,y,) are real numbers and i, j, k are the quaternion units. The rotation matrix corresponding to a
quaternion q is:

1-2y2 222 22y — 2wz 2xz + 2wy
R(q) = | 2zy+2wz 1-222—-22% 2yz— 2wz
2xz — 2wy 2yz 4 2wx 1-—2z%2— 2y2

Axis-Angle to Quaternion:

Quaternions are closely related to the angle-axis representation of rotations. The exponential coordinate quaternion
is given by ¢ = [cos(0/2), sin(8/2)@], where @ is the rotation angle and & is the unit axis of rotation. Conversely,
given a quaternion ¢ = [w, v, the rotation angle 6 can be obtained as § = 2 arccos(w), and the rotation axis @ is

W= sin(‘é/2) if @ # 0, otherwise w = 0.

Each representation has its own advantages and disadvantages, and converting between them allows us to choose
the most suitable representation for a given task. Euler angles are intuitive but suffer from gimbal lock. Axis-angle
representation is useful for understanding the geometric interpretation of rotations. Quaternions provide a compact
and efficient way to represent and compose rotations, making them popular in computer graphics and robotics.

Thought about Axis angle

The axis-angle representation of rotations offers an intuitive way to describe rotations. By constraining the domain of
0, this representation can be unique at most points. It can be converted to and from rotation matrices via the
exponential map and its inverse, when possible. Moreover, this representation induces a distance between rotations,
which serves as a metric in SO(3), independent of the parameterization used. From a learning perspective, each
rotation corresponds to two quaternions, which is known as "double-covering." When using quaternions in neural
networks, it is necessary to normalize them to unit length, which may cause issues with gradient magnitudes in
practice. Quaternions are computationally efficient and are widely used in various applications, such as physical
engines and robotics. It is important to pay attention to the convention used for representing quaternions, such as
(w, z,y, z)or(z, y, z,w). Some popular conventions include (w, z, y, z)for SAPIEN, transforms3d, Eigen, Blender,
MuJoCo, and V-Rep, while (z, y, z, w) is used in ROS, PhysX, and PyBullet.

Chapter 3 Reconstruction from Multi-view [Lecture 4, 5, 6]

This chapter focus on pipelines that take multiview images as input and output a 3d sterio. Section with * are not
include in lectures.

3.1 Basics [Lecture 4]

3.1.1 Camera Model: Mapping 3D to 2D
TR X—/N\IERRIERR/ N FUETUEEY
Conventions

e Camera coordinate system O°¢ : [X¢,Y ¢, Z¢]T € R? with units in millimeters.
 World coordinate system O% : [X ¥, Y%, Z%]T € R3 with units in millimeters.
e Physical imaging plane O : [z, y}T € R? with units in millimeters.

e Pixel spacep : [mpiwel,ypmel, l]T, € Rz, dimensionless.

af://n719
af://n722
af://n723
af://n726

=
H
=

Y YC ZC

Intrinsic

According to the principles of lens imaging, the object plane can be approximated as being at infinity, with the image
formed on the physical image plane. The relationship between the camera coordinate system

0°: [Xv,Yv, Z¥|T € R? and the physical imaging plane O : [z, y]T € R? can be directly derived through similar
triangles:

XC
. @ [f 00 0|5, f 00 0
Tr =
{ .Y Homogenizedto Z°|y| =0 f 0 0 e Vectorizedto Z‘p=MP¢ M= 1|0 f 0 0
v=Il7 1] looo1of |7 0010

rom the physical imaging plane O to the pixel space p : [Zpigel, ypmel]T, € R2, considerations must be made for

central shift and distortion. Letk = % = d% where d,; and d,, are the pixel width and height (in millimeters),

respectively.

ug and vy are dimensionless central shift quantities. Substituting x, y into the expressions gives:

Tpizel = 3-T — 7-COt BY + ug _, Jovia =aZ —acot 2 + uo KB —1f
1 ¢ o= =
Ypizel = d,sinf Y+ vo Ypizel = % % + vy ’
Thus, we have:
Tpizel a —cotf wug| [X¢ .)Zf_
Z° | Ypizet | = |0 % vo| | Y¢| Vectorized to — p = EKPc =K gc
1 0 0 1] LZ° 1

BEHE, ATHETE, BOSSIN—EMHE—LagER, O : P = [X/Z2°,Y°/Z°1] e R?, W
p=KP’

BN FEEASEERE

af://n737

Extrinsic

(Transformation from the world coordinate system O% : [X™, Y%, Z"’]T to the camera coordinate system

0°: [X°,Y*, Z97)

O - 0°: P°=RP™+t
Xe X e
Yel [R t]|YV
ZC
1 1

Imaging Formula

X’U}

Yw

ZUJ
1

From the world coordinate system O% : [X*, Y%, Z¥]T to the pixel space p = (@ pizel Ypizel]

1

P¢ = [R t]Pw Ppizel = e KP* — Pypizel =
a —cotf g Ry Ris
where K = 0 % Vo ,R = R21 R22
0 0 1 R31 Ra
3.1.1* Camera Calibration
k
(W) Y Calibration rig

-P,... P, with known positions in [O,,i,ju.K,]

P4, ... P, known positions in the image

1 W
KR t/P
Ry3 1
Ros|,t = %2
Rs3 t3

Assuming known correspondence

between P, and p,

Goal: compute intrinsic and extrinsic parameters

Camera calibration involves determining the intrinsic and extrinsic parameters of a camera to accurately map 3D

world coordinates to 2D image coordinates.

Assume n images are captured, each with k chessboard corners.

e Input: Chessboard corner coordinates Mj(j €1,2,...,k) and their corresponding image coordinates

mij(i €1,2,...,n,j € 1,2,...,k).

af://n748
af://n752
af://n755

e OQutput: Camera intrinsic parameters K, and extrinsic parameters R, t; for each image.
e Objective: Minimize the reprojection error:
n k
Imi; — 17(K, R, £, M) |2
i=1 j=1
where 7 (K, Ry, t;, Mj) represents the projection of M onto the ¢-th image.
1. Collect Data: Capture a set of images of a known calibration pattern (e.g., a checkerboard) from different
viewpoints.
2. Detect Feature Points: Detect and identify feature points in each image.
3. Estimate Intrinsic Parameters: Use a nonlinear optimization algorithm to minimize the reprojection error.
4. Estimate Extrinsic Parameters: Estimate the extrinsic parameters for each image.
5. Refine the Model: Iteratively refine the camera model by re-estimating the parameters.
6. Validate the Model: Validate the accuracy of the camera model.
]T

In homogeneous coordinates, the projection point in the chessboard coordinate system is m = [u, v, 1]*, which has

the corresponding relationship:

u

- Y
M= |v| =K][r;y ro r3 z
1
1
Assuming the chessboard corners are on the plane Z = 0:
U
Am=A|v| =K[r1 ry t]|Y
1 1

Let M = [X,Y,1]7, then:

Mo=HM H=K[r, 7 t{]
where H is the homography matrix.
3.1.2* Depth Images: 2.5D Representation

We want to aggregate complete 3D scenes from partial observation of the world. Beyond the image taken by camera
which are in 2D pictures(single view/ single frame), there are actually different types of sensors and visual data as
input.

Depth sensors Depth image

RGB camera

RGB image Depth image LiDAR point cloud

e Depth sensors are a form of 3D range finder, which measure multi-point distance information across a wide
Field-of-View (FoV).

e Adepth image is a single-channel image filled by depth values. Attention that depth image records z depth, i.e.,
the distance along z axis (optical axis) from the optical center to the point, not ray depth (the distance between
the optical center and the point).

e Why 2.5D? True 3D representation should enable distance measurement between two points, in addition to
depth, you need K to compute (, y, z) that is truly 3D, therefore depth is only 2.5D

af://n788

e Stereo Sensors (1) estimate correspondence, (2) compute disparity and then (3) turn it into depth.

Stereo Sensors Point Triangulation

= 2

Stereolabs Zed
Intel RealSense

Ensenso

W

Occipital Structure Core o X o

e Disparity Maps

Disparity Parallel binocular depth

X Xrl
r a
f i)
‘ — b <Ll
Disparity map / depth map Disparity map with occlusions
Cq T C, on o

Failure of correspondence search

Advantages:
1. Robust to the illumination of direct sunlight
2. Low implementation cost

Disadvantage:
Finding correspondences along Image; and Imagep
is hard and erroneous /

Non-Lambertian urfaces, specularities
e To fix the disadvantages of passive sterio sensors we can use Structure Light.

S, . Tz,
i “41244,, i 220044
77

RealSense D415 RealSense D435 RealSense D455

Right IR image The observed scene Left IR image

Stereo matching

3.1.3 Epipolar Geometry

Epipolar constraint

o

1 € ; O,

When a 3D point X is projected onto the firstimage as point xi, its corresponding projection in the second image must
lie on a specific line known as the epipolar line. As shown in the figure, the potential matches for point p1 must lie on
the epipolar line I2.

Relating Two Views

The coordinate transformation from plane |1 to plane Iz is represented by [R]t]. For a point with coordinates X in the I
coordinate system, its coordinates in the |2 system are RX+t. Alternatively, this can be described as Oz having extrinsic
parameters R and t relative to O1. In the diagrams, the blue frames represent pixel planes (using a perspective camera
model rather than the pinhole camera model discussed earlier). Points p1 and pz are located on these pixel planes. If
we choose the left camera coordinate system as the world coordinate system, the right camera has extrinsic
parameters [R|t] relative to the left camera. According to the equation p = %KPC, we have:

z1p1 = K1 P z9py = KQ(RP + t)

To relate the two views using epipolar constraints: Points x1 and xz in the diagrams are on the normalized image
planes, denoted as P’. According to p = KP’, we have:

1 =K; 'p1 = Kflz%KlP

rog = K2712—12>K2(RP+75)

af://n827
af://n828
af://n831

In terms of scale, we can approximate 21 = zs This gives us Rx1 + t &~ 4. Taking the cross product with t on both
sides:

t x (Rz1 +t) &~ t X @ Then taking the dot product with x2 on both sides:

Ty - [tx|RT1 = T3 - (t X) Defining the essential matrix E = [t | R, we get the first equation:

ngml = (0 Substituting the expressions for x1 and xa:

pI K ~T[t,]RK ~'p; = 0 Defining the fundamental matrix F = K ~T[t,|RK ~!, we get:

PYFp1 =0

p1=K,P
z1p1 = K4P p2= KZ (RP o t)
2,p2 = K, (RP + 1) ‘

2 2 x; = K{'p;=P
p1=K,P X, = K;'p,~RP +t
P2=K, (RP +1t)

x' - [tx (Rx)]=0

Epipolar plane xT[t]Rx =0

Epipolar lines+— XTEx =0

!
0 \e\ //e/ 0
Epipoles E is the Essential Matrix

3.2 SfM: Structure from Motion [Lecture 4]

3.2.1 Overview

SfM is the process of reconstructing 3D structure from its projections into a series of images taken from different
viewpoints. (Johannes L.Schonberger, e.t.c.) The concept involves analyzing the apparent motion of features across
multiple images to recover the 3D structure of a scene and the camera motion. The aim is to reconstruct sparce 3D
model in a large wide.

3 paradigms
* Incremental -—

* Global ===

e Hierarchical

Incremental SfM is a sequential processing pipeline with an iterative reconstruction component
3.2.2 Pipeline

0. Data Association

Unstructured Images Two-View Geometry
Scene Graph

e |nput: Unstructured Images

af://n844
af://n845
af://n849

e Qutputs:
o 1. identified pairs of overlapping images
o 2. geometrically verified inlier matches (and optionally, feature descriptors for later use)

o 3. related camera poses (if known calibration)

Images Correspondence Search Incremental Reconstruction Reconstruction
lEe -->[- Initialization - em—————— | |
1 1

Image Registration Outlier Filtering

Matching

i,

Triangulation Bundle Adjustment
B g =

Geometric Verification

1. Feature Extraction and Matching : Detect distinctive features in each image and establish correspondences

between them across different images.

Inlier/outlier correspondences

A T4
{R,t}

2. Initial Reconstruction : Select an initial image pair(two non-panoramic view |||| # 0), estimate the relative
camera pose between them, and triangulate the inlier correspondences to obtain their 3D coordinates. (for

example, by estimating F matrix?)

P=K[||0] P'=K'[R'|t']
3. Bundle Adjustment Optimization : Refine both camera parameters and 3D point positions by minimizing the

reprojection error across all observations.

in ||z — (P, X
min ||z — (P, X)||

B

4. Incremental Reconstruction : For each additional image, estimate its camera pose relative to the existing
reconstruction and triangulate new 3D points. Repeat the bundle adjustment to optimize the entire model.

[

P=K[l]0] V%

P’ =K’ [R” | ']
Bundle Adjustment

Bundle Adjustment is a critical optimization technique used in both Structure from Motion (SFM) and Simultaneous
Localization and Mapping (SLAM). It jointly optimizes camera parameters and 3D point positions by minimizing the
sum of reprojection errors across all observations.

Minimize sum of squared reprojection errors :

g(XvRat) = Zzwm : ||P($i’Rjatj) - m||2

i=1 j=1

Specifically, it adjusts the camera extrinsic parameters (position and orientation) and the 3D point coordinates to
minimize the difference between the observed 2D feature locations and the projected locations of their corresponding
3D points. This optimization is typically solved using least squares methods and is essential for achieving high-
precision 3D reconstruction and camera pose estimation.

3.2.3 Related
Global SFM estimate global rotations: ming ||R;; — R;R;T||

R3?

Rz? {R, ths

Rt
Rt} R ths

Rs?
The complete understanding of SFM requires knowledge from multiple areas, including:

e Stereo vision and triangulation
e Camera calibration and pose estimation
e Feature detection and matching algorithms

e Optimization techniques for non-linear systems
Several important papers and SLAM (Simultaneous Localization and Mapping) algorithms have contributed
significantly to this field, providing robust solutions for various applications in computer vision, robotics, and
augmented reality.

SfM vs. SLAM: differences

SftM SLAM
o Inputis unordered set of Input is stream of images, stereo, or
images depth and sometimes IMU

« Focus is on precision, with aim

Focus is on speed and robustness,
to produce a good 3D model

with aim to localize camera or robot

» Offline, one-time process e Online process, possibly with

relocalization
o Published mainly in vision

« Published mainly in robotics
conferences

conferences

. li
Complicated « Very complicated

3.2.4 Learning Based SfM

How to use learning-based methods to improve the robustness/precision of the SfM pipeline? Two thoughts:

1. Improving features and keypoints for matching

2. Improving the matching process via global reasoning

af://n891
af://n906

SuperPoint: A Learned Detector and Descriptor

Interest Point Decoder w
H Conv E
Input : E
e »m e
w prTToenoenoenoeees : / ' + H
T T b
> ' Descriptor Decoder W
H 1 A PN} Conv 5
i Bi-Cubic E
E W
. ' D

What makes for good key points? Points should be repeatable and distinctive.

Detection (S

More Repeatable

Robust detection
Precise localization

More Points

Robust to occlusion
Works with less texture

Description 4)

More Distinctive More Flexible

Minimize wrong matches Robust to expected variations
Maximize correct matches

Detector Descrlptor
Convolution pR——
wig I
shared Sd'lmlx + -> -> - [20(xy) sm.x 2D
shared — -> + .> (xy)
representatlon H/8 u keypoints represen(atlon H/8 -’ keypoints
ﬁm ._ fm
H Per cell 8x8 2D Location Classifier -

T Canvolution 256
w/

Dustbin

nl'lnnnn eoo "H”Hn"lﬂﬂ?/

'
8x8 64 Possible Locations + 1 Dustbin 2D (x,y)
keypoints

Bilinear interpolation using keypoint locations to get

. /I8
H
L2
:., -> g iErpolate B e i e
1
: '

Probability

No upsampling layers

Each output cell responsible for a 8 X 8 pixel patch descriptors

(a) Interest Point Pre-Training (b) Interest Point Self-Labeling (c) Joint Training

' SuperPoint

X : Unlabeled Image Pseudo-Ground :
Point Images i

" 0 Truth Interest

‘ Base Detector | Points g

: \ g H Tell

8 : Homo raphlc .

i i gg U [g i Base Detector Adapgaﬂon (B : v b
Ik s ekl

fossp iﬁ"ﬂﬁﬁﬂg ~L gl o

Labeled Interest

Interest
Point Loss

Point Loss

1. Synthetic Pre - training

o Dataset Creation: A synthetic dataset “Synthetic Shapes” is created, composed of 2D geometric shapes
(e.g., quadrilaterals, triangles). Interest points are clearly defined at junctions and specific positions. After
rendering, homographic warps are applied to augment data.

af://n914

» Heavy noise

>g « Effective and easy
\/
=T AN

Checkerboards Lines Stars

o MagicPoint Training: Use the detector part of SuperPoint architecture to train on “Synthetic Shapes”. Let
the detector function be fy(+), and train it with the data from the synthetic dataset. Denote the input image
as I, and the output interest points as = fg(I). MagicPoint outperforms traditional detectors on this
dataset in terms of mean Average Precision (mAP).

2. Homographic Adaptation

Synthetic Shapes (has interest point labels)

.
j ’ ‘ 3) First train
<~ R - on this
" w -8 v
‘: el lo “n
| iy o R -
MS-COCO (no interest point labels) “Homographic
Adaptation”

Use resulting
detector to
label this

1. Formulation: Based on the idea that an ideal interest point operator should be covariant with respect to
homographies. Given a random homography H, if fo(-) is covariant, then Hz = fo(H(I)), which can be
rewritten as ¢ = H 1 fo(#H(I)). In practice, we use the empirical sum over a set of random homographies.
The improved detector F'(-) is defined as F' (I; fg) = N%l SNk 3L o (Hi(I)), where N, is the number
of homographies.

2. Choosing Homographies: Decompose potential homographies into simple transformations (translation,

scale, etc.). Sample these transformations within pre - determined ranges and compose them. Experiments
show that IV, = 100 gives a good balance in performance improvement.

3. Iterative Process: Apply Homographic Adaptation iteratively to improve the base MagicPoint architecture
on real - world images. The resulting model after adaptation is SuperPoint.

Synthetic Warp +
Run Detector

Unlabeled

Input Image
Homographic
Adaptation _

PointSet#1 point Set #2
+ Simulate planar camera motion Point
with homographies Aggregation

+ Self-labelling technique Detected Point Superset

— Suppress spurious detections

— Enhance repeatable points

3. Joint Training of SuperPoint

o Pseudo - ground Truth Generation: Use the MagicPoint detector and MS - COCO 2014 training dataset

(resized to 240%320 and grayscale) to generate pseudo - ground truth labels. Apply Homographic Adaptation

with N, = 100 twice.
o Training with Loss Functions
= The final loss L is the sum of the interest point detector loss £, and the descriptor loss L4, weighted
by \ie, L=Ly+ L, + A

= For the interest point detector loss Ly, it is a cross - entropy loss over cells z,, in the output of the
H.,W,
1 Cy c

interest point detector. Given the ground - truth labels yp,,, Ly(X,Y) HW
c c

(]

lp (mhw; th)'

8>
e

where I, (Zhw;y) = — log (—EXP(”“‘))

Zﬁil exp(Zhut)

= For the descriptor loss Ly, it is applied to pairs of descriptor cells dy,, and d;z’w" Given the homography

1 Hch HcaWc

! I
- induced correspondence $pyh/w, La (D’ D ’S) = (HW.)_2 Z Z la (dhwa Ay shwh’w'),
cVe h=1 hA'=1

w=1 q'=1

where lq (d,d'; s) = Ag * s x max (0,m, — d*d’) + (1 — s) * max (0,d"d’ — m,).

SuperGlue: context aggregation + matching + filtering

SuperGlue: context aggregation + matching + filtering

5
o .
. e feature outlier pose
(]
2 M » description * matching » filtering » estimation
£
> Classical: SIFT, ORB me?"ﬁst > Heuristics: ratio test, mutual check
> Learned: SuperPoint, D2-Net eighbor . £
___________ Matching > Learned: classifier on set
I Interest Points |
| |
: ! {' deepnet |
| |
| I
| |
. _ _ Descriptors{p"_ |
[DeTone et al, 2018] [Yietal, 2018]

Main focus: Context is important in matching!

e Formulation

af://n964

Inputs

e Images A and B
e 2 sets of M, N local features
o Keypoints:
- Coordinates
- Confidence
o Visual descriptors:

—

Outputs

Single a match per keypoint
+ occlusion and noise
— a soft partial assignment:

P c [0, 1)M*¥

I sum =<1
aim < 1
e Components
. 'C’tca' Attentional Aggregation matching Sinkhorn Algorithm
eatures - . descriptors partial
dfl __| Visual descriptor o Cross | f lA score matrix row assignment
it —| normalization
A | position
P — Keypoint L Sij— u
B_ Encoder) |
p; J
B
df —@® — | £; I
L dustbin N-+1 -
score -

o A Graph Neural Network with attention: Encodes contextual cues & priors and reasons about the 3D

scene.

o Solving a partial assignment problem: Using Differentiable solver and enforces the assignment

constraints agree to domain knowledge

e Pipeline

Attentional Graph Neural Network Optimal Matching Layer

o=
g

g

e Initial representation for each keypoints 7: (O)Xi
e Combines visual appearance and position with an MLP:

Attentional Graph Neural Network ‘Optimal Matching Layer

Atietional Aggregation ‘Sinknom Algorithm

quimes

vt (o " o s RN ssignment
: _ | D -
P Kaynmm\'d ;L‘ N L)
B Encoder £\ [
" , =
7| IS e
ar @7 = — f,"J 1 S

Compute a score matrix S € RM*N
for all matches:

fA=w. - Oxd+b

Ox; = d; + MLP (p;)

Multi-Layer Perceptron

Attentional Graph Neural Network Optimal Matching Layer

Atentional Aggregation . Sinkhor Algorthim
- s

: v (5o] oross) o
p;: ?{:I\d_ ‘ s—‘_
:’“ & Vﬁ 4l ,uJ

* Occlusion and noise: unmatched keypoints are assigned to a dustbin
e Augment the scores with a learnable dustbin score 2

« Campuo thoassonment Pt maximizes 5.,
= Solv an aptimal ansportprobiem

Sij =<fA £ >

Attentional Graph Neural Network Optimal Matching Layer

N\

Attentional Aggregation - Sinkhorn Algorithm

Cross. L

SiN+1 =Sm+1,; =Smt1,v+1 =2 ER

e Compute ground truth correspondences from pose and depth
e« Find which keypoints should be unmatched
e Loss: maximize the log-likelihood P, ; of the GT cells

3.3 MVS: Muti-View Stereo [Lecture 5]

Fron image to dense 3D MVS Pipeline

Images
Camera parameters

Unstructured Images

SR, >% Scene Graph
Assoc. E =

)| _— Bounding box
“nitialization—

3.3.1 Overview

The definition of multi-view stereo is reconstructing the dense 3D shape from a set of images

and camera parameters. There are many application based on this tech: (1) Enable inspection in hard to reach areas
with drone photos and 3D reconstruction (2) Create 3D model from images (3) Provide tools to inspect on images and
map interactions to 3D.

Multi - View Stereo (MVS) aims to compute the three - dimensional (3D) structure of an object or a scene from multiple
calibrated images. The input for MVS is a set of multi - view images of a scene or object. These images are captured
from different viewpoints, and the camera parameters (both intrinsic and extrinsic) are assumed to be known.
Additionally, a set of sparse matching points (from feature - based matching algorithms) may also be provided as
input in some cases.

e Given the multi - view images with known camera parameters, the main goal of MVS is to estimate the dense 3D
surface coordinates of the scene or object. This involves finding the depth value for each pixel in the images (or a
subset of pixels) and then using these depth values to construct a 3D point cloud or a surface model.

e Mathematically, for each pixel p in a reference image I, we want to find its corresponding 3D point
P = (X,Y, Z) in the world coordinate system. Using the camera projection equations p = K|[R|t|P, where K
is the camera intrinsic matrix, [R|t] is the camera extrinsic matrix, we can relate the 2D pixel coordinates
p = (u,v) to the 3D world coordinates P. However, in MVS, we need to solve this problem in a multi - view
context, considering multiple images I1, I, - - -, I, to disambiguate the depth values and get more accurate 3D
reconstructions.

3.3.2 Classical Pipeline
e Step 1: Select Matching Views
Choose several matching views corresponding to the reference view.
e Step 2: Pixel - level Processing in Iterations

o i: For each pixel in the reference view, further select matching views. This is to narrow down the views that
are most relevant for calculating the depth information of this specific pixel.

o ii: Define the range of depth and normal values. This provides a search space for estimating the 3D position
of the pixel.

o iii: Compute the photometric matching cost (such as Normalized Cross - Correlation, NCC) between the
reference view and multiple matching views. This cost measures how well the regions around the pixel in
different views match in terms of photometric properties.

o jv: Select the candidate 3D point with the optimal (lowest in most cases) matching cost. This 3D point is
considered as the best estimate for the position of the pixel in 3D space.

af://n999
af://n1007
af://n1015

e Step 3: Post - processing

Filter out noisy depth values and fuse multiple depth maps. This step aims to improve the quality of the depth

information by removing incorrect or inconsistent depth values and combining depth maps from different
processing steps or views.

The basic idea of Dense Depth Estimation which is the core step in MVS (estimate the depth values for a large
number of pixels, ideally all pixels in the images) is reconstruction from photometric consistency. The assumption
is that corresponding points in multiple images of the same scene should have similar photometric properties (such
as color and intensity). By minimizing the photometric differences (e.g., photometric consistency loss) between
projected points across different views, we can estimate the 3D structure. For example, in a multi - view setup, if a

point in one image is projected to another image based on a hypothesized 3D position, the color/intensity at the
projected location should match the actual pixel value in that image as closely as possible.

¢ Plane Sweep: We form different depth planes based on the reference view. For each depth plane, we use a
homography matrix H to map the plane to the source views and calculate the matching cost (such as
Normalized Cross - Correlation - NCC) between the projected regions. The depth value with the minimum
matching cost is considered as the estimated depth for the pixel in the reference view.

SSD = (Wi(i, 5) — Wa(i, 5))”
i,J
NCC:normalized cross corrlaion

20 Wi, 5) — pwy) (W (i, 5) — pw,)

> Wi, 5) = pwy)? 305 (Wa(i, 5) — pws)?

NCC =

e Reference image

o Details: Calculation of the Homography Matrix H

= Assume that the world coordinate system is the coordinate system of the reference camera. Then:
= Apixel p; = [(z,y,1)]7 in the reference image satisfies p; =~ K P.

= Pisapoint on the plane II; formed by back - projecting the reference image at a distance d into
space. The plane I1,; is parallel to the imaging plane.

= | et be the normal vector of Iz (n = [0, 0, 1]T). Thenn”P + d = 0, which implies —"TTP =1.

= For any source camera, with camera intrinsic matrix K; and extrinsic matrices R;, t;:

= A pixel p; in the source image satisfies
pi = Ki(RiP +1;) = K; (RiP Yt (— ”ZP» - K; (Ri _ ten?)P.

= Also,p; = K; (Rz - tigT)Kflpl'

= The matrix H = K (Ri — t"'gT)Kl_l is defined. This matrix H establishes the correspondence

between pixels of the two images and is called the homography matrix.

e Selecting multiple matching views:
¢ Different points on the object's surface will be more clearly visible in some subset of cameras
o Could have high-res closeups of some regions
o Some surfaces are foreshortened from certain views

o Some points may be occluded entirely in certain views

® More measurements per point can reduce error

Principles of selecting views Selecting Examples

Geometric Proximity: Views that are geometrically close to the reference

view are preferred. Geometrically close views are more likely to have

overlapping regions that can provide consistent information for depth X

estimation. For example, cameras that are adjacent in a multi - camera 1 \\ii%;/
setup covering a scene. X ‘
Photometric Similarity: Views with similar photometric properties to the v J
reference view are chosen. Views where the intensity and color of ‘ 7
corresponding regions match well are more suitable for calculating segE: | N
accurate depth information. If there are significant photometric differences . N\ /%
(e.g., due to different lighting conditions), it can lead to errors in depth
estimation.

Spatial Coverage: Views that cover different parts of the scene relative to 7
the reference view are selected. This helps in getting a more

comprehensive understanding of the 3D structure.

3.3.3 Learning-based MVS

Why learning based methods? Learned feature can do more robust matching and the shape prior learned by the
network can do more complex reconstruction. MVSNet

MVSNet: A first pipeline

| mmmmm Conv + BN + ReLU, Stride=1 |
I I | mmss Conv + BN + ReLU, Stride =2 |
! — Conv, stride = 1 i
j i © Concatenation 1
| © Addition 1
L

BT ey
i i

Initial Depth Map

Shared Weights

| |

Source Images
d—

]

1 shared Weights

o o
2 ¥

E

8 Z Variance
< - Metric
-4

Feature Differentiable Cost Volume Depth Map
Extraction Homography Regularization Refinement

¢ Image Feature Extraction
o Input: N inputimages {I;} ¥ ,.

o Process: An eight - layer 2D CNN is utilized. Strides of layer 3 and 6 are set to 2, dividing the feature towers
into three scales. In each scale, two convolutional layers (with Batch Normalization (BN) and Rectified Linear
Unit (ReLU), except the last layer) are applied, and parameters are shared among all feature towers.

o Output: N 32 - channel feature maps {Fl}f\il which are 1/4 the size of the input images in each
dimension.

Homography

Image feature
warping

: ‘; - ?
M Source view
R, t ¥

Reference view

‘ Source view

¢ =K (R+4tn")Klq
The homography matrix H between the pixel

coordinate systems of two cameras for a point on ')
All feature maps are warped into different frontoparallel

planes of the reference camera to form N feature volumes
N
Vit

the plane is defined as

H=K(R+ $tn")K !

the homography matrix H between the two
camera coordinate systems (ignoring intrinsic
effects) isH = R + %tnT

¢ Cost Volume Construction
o Input: Extracted feature maps {F;}Y |, camera parameters {K;, R;, t;}¥ | of the input cameras.
o Process:

= Differentiable Homography: All feature maps are warped into different frontoparallel planes of the
reference camera to form N feature volumes {%}f\;l The coordinate mapping is ' ~ H;(d) - z,

where H;(d) = K; - R, - (I— %) -RT.KT.

af://n1074
af://n1076

= Cost Metric: A variance - based cost metric M aggregates the IV feature volumes {Vi}fil into a single

N (Vi-Vy)?
costvolume C.C = M(Vy,---,Vy) = _ZH(N)
feature volumes.

, with Vl being the average volume among all

= Cost Volume Regularization: A multi - scale 3D CNN (akin to a 3D version of UNet) refines the cost
volume C' to generate a probability volume P for depth inference. After the first 3D convolutional layer,
the 32 - channel cost volume is reduced to 8 - channel, and the number of convolutions in each scale
changes from 3 to 2 layers. The last convolutional layer outputs a 1 - channel volume, followed by a
softmax operation along the depth direction for probability normalization.
o OQutput: Probability volume P. The cost volume in this context is constructed based on the frustum of the
reference camera. It implicitly encodes camera geometries in the network to build 3D cost volumes from 2D
image features, which is crucial for depth map inference.

e Depth Map Generation
o Input: Probability volume P, reference image I;.
o Process:

= Initial Estimation: The depth map D is computed as the expectation value along the depth direction,
D=y dx P(d).

Reference view
depth prediction

v Source view
Weighted sum
along view light Qv}
Reference view

Admax
D= Y dxP) QL

d=dpmin Source view

Winner-take-all is non-differentiable

= Probability Map: The quality of a depth estimation d is defined by the probability sum over the four
nearest depth hypotheses.

= Depth Map Refinement: A depth residual learning network is employed. The initial depth map and the
resized reference image are concatenated as a 4 - channel input, passed through three 32 - channel 2D
convolutional layers followed by one 1 - channel convolutional layer to learn the depth residual. The
initial depth map is added back after pre - scaling to [0, 1] and post - scaling back.

o Output: Refined depth map.
e Loss Calculation

o Input: Ground truth depth map, initial depth map Ji, refined depth map Jr.

PEPvalid d(p) —d; (p)‘ +A- |d(p) - dr(p)
of valid ground truth pixels, d(p) is the ground truth depth value of pixel p, and A = 1.0 in experiments.

o Process: The loss function is Loss = Y , Where pyqlid is the set

o Output: Loss value for training the network.

Improvements

e Analyze per-pixel confidence intervals && Narrow down the sampling range based on uncertainty

af://n1144

Coarse-to-fine Sampling Cascaded Depth Prediction

« depth hypothesis > view direction JL probability
v Nt
- ’ — T
o el
- - »

previous proposed

e Point - based Multi - View Stereo Network

Represent the scene with point cloud, which is suitable for sparse occupancy and

et memory - efficient. First, estimate a low - resolution depth map with existing
_— ‘..":E:: -l methods, then unproject to get the initial point cloud. The goal is to refine the input
Referenee '?:‘-‘{-{.,’ | depth map by moving the unprojected points along the camera direction. The flow
empeaesronp © 1 prediction is calculated as the expected offset, such as

Deltad, = E(ks) = >_;" .. ks x Prob(py)

e Depth - Normal Consistency
- Normal Estimation as Auxiliary Loss: Estimate the normal along with the depth map. Using normal
estimation as an auxiliary loss in the depth - map prediction process has shown to be quite effective.

Depth _j

Estimation

Depth map prediction | ®lelgisiisiiciple i

Normal

Estimation

t

Normal map prediction
- Refine Depth from Normal: Assume that pixels within a local neighborhood lie on the same tangent
plane, expressed as ﬁT(p p;) = 0.Based on this, the depth of neighbor pixels can be derived from the current

NigLj+NiyY;+MNi22;
ixel normal. For example, 2/ R ,
P P i) (ui—uo)niz/ fot-(vi—vo)niy/ fotniz

(x,yj, 2;) are the coordinates of the neighbor pixel, and (u;, v;) and (ug, vg) are related to the camera's
optical properties and pixel coordinates. This method regularizes the depth by normals to improve depth

where 7t = (g, Ny, Ni2) is the normal vector,

accuracy and surface smoothness.
&% L U Py 'Ll 110 R Yl “osrtytJO o iz

(i By 1

iy’

Ug

&

NN

WFE

u
A
N~
I~
N~
N~
\'.
N~
]
<]
N

Camera
coordinate
system

[/ T NNRST S

Summary of learning based MVS: Deep volumetric stereo has the potential to achieve more robust matching and
more complete 3D reconstruction. However, volume - based methods face a significant drawback in terms of
computational efficiency. This is mainly because the 3D target scenes they deal with are often sparse, resulting
in unnecessary computations over large volumes of empty or redundant space. To address this issue, adaptive
sampling emerges as a viable solution. By intelligently adjusting the sampling process according to the
characteristics of the scene, it can enhance both computational efficiency and the quality of reconstruction.
Additionally, normal prediction, which is relatively easier compared to depth prediction, can play a crucial role.
Incorporating normal prediction into the depth - estimation process can help improve depth accuracy and
smoothness, further refining the overall 3D reconstruction results.

3.4 NeRF: Neural Radiance Field [Lecture 6]

3.4.1 Implicit Representation

The difference of implicit and explicit representation:

Explicit:

AN
I \
Voxels Point clouds Mesh Surface Normals
Implicit:
Signed distance field Mixture of primitives

2 ways of implicit representation

e Signed Distance Field (SDF) maps each 3D points p to it's signed distance to the object surface S. The sign is
positive if the P is inside the object, and negative otherwise. SDF(p) = sign(p) - minges||p — q||

e Mixture of Gaussians represents a shape as a mixture of local implicit functions (3D gaussians)

af://n1168
af://n1169

F(z,0) =) fi(,6:)
i€[N]

2
Folw0) = coeap | 3 P ED

de{zy,z} 27"12,(1
Pros:
® Compared to point clouds: clearly defines the (iso-)surface
® Compared to meshes: can continuously adapt to arbitrary topology
® Compared to voxels: can be represented with few parameters (e.g. mixture of
simple implicit functions)
e They are continuous in 3D
e Can give analytic normals, can be applied with boolean operations, etc
Cons:
e SDF is well-defined for only watertight meshes (there is an interior and an exterior)
® Need extra steps to visualize

o I[important] Not all complex shapes can be efficiently / accurately represented with simple
primitives

DeepSDF: Efficiently representing complex shapes by learning their SDF

Idea: Learn a continuous representation of 3D implicit surfaces

Query p = (x,y,z), Shape latent code Z

Shape code
F(p: Z) = SDF(p, M)

Query p = (x,y,2)

=> Continuity in 3D space AND shapes space [3] Parkl9

Representation of a continuous field

Learned implicit functions:

e Can represent complex shapes

e Are continuous mappings because they use MLPs

e Are applicable to N-D data: 2D images, 3D shapes,
radiance fields

* SDF>0

@ SDF<0 "

Visualization of implicit functions is done by extracting iso-surfaces:
I. Running inference for multiple queries in input space
2. Rendering the result by combining the queries

3.4.2 Overview

When focusing about 3D scene rendering, the material, lighting and geometry should be taken into consideration.
Camera that take the scene's photo is defined by intrinsics and extrinsics (6DoF). The high level idea of neuaral
rendering is to use a neural network to encodes entire scene description, lighting, materials, etc. And then use the
rendering equation to get the image given view point.

Lo(x7 Wo,)\7 t) = LE(xa Wo,)‘7 t) + / fr(xa Wi, Wo,)‘7 t) Li(xa Wi,)‘7 t) (wi : n) dwi
Q

af://n1187

However the direct use of volume representation leads to horrible storage requirements.

Ilglr(P)

Composite

e

v

Final Reconstruction Target Image

Multiview Capture (Section 8) Encoder + Decoder (Section 4+5) Ray Marching (Section 6) End-to-end Training (Section 7)

NeRF uses an implicit function to replace the volume representation, and track light emission along different
directions.

-7:71'(51:, Y, 2,0, ¢) = (Ta g, b, 0)

There are 2 general idea behind NeRF: The appearance of the surface will be observed at views along the camera ray
&& If we have a light transport model from the surface along the ray to the pixels, we will know the pixel color.

Volumetric Light Transport Model

— e® : _______________________________ - _.._5_‘_".1-.._‘ R
¢ \
4 \
I 5 o 1
i Transmission |« :
! :
! 1
| In-Scatter '
 amme Ee :
: & Emission |

1
l :
\\ ,,

Transmission in the volumetric light transport model is related to the attenuation of light as it passes through the
volume. The attenuation coefficient o (also representing transparency) is a key factor. A higher o means more
attenuation of light. Mathematically, the transparency of a ray segment of length ¢ is described by the Beer -
Lambert's Law: a(t) = 1 — exp(—ot). Here, a(t) represents the opacity of the ray segment at length ¢. As ¢
increases or & increases, the opacity a(t) increases, indicating more light is being attenuated. In - Scatter &
Emission: In - scatter refers to the process where light scatters within the volume, and emission is about the light
being emitted from points within the volume. The emission radiance is denoted as c. The total light emitted along a
ray segment fromt¢ = 0 to ¢ = § is calculated as f06(1 — a(t))e(t)dt. When ¢(t) is assumed to be a constant ¢, we
can approximate this integral. First, substitute a((t) = 1 — exzp(—ot) into the integral:

5 5
/0 (1— (1 — exp(—ot)))cdt = /0 exp(—ot)cdt
= c/éexp(—at)dt

0

Integrating exp(—at) with respect to ¢ gives

af://n1195

5
[—%emp(—at)] . = —%(e:cp(—oﬁ) -1)= %(1 — exp(—0od))

So the light emitted is < (1 — exp(—0d)), which can also be written as a(6) (<) using the Beer - Lambert's Law
relationship. In practice, for numerical computation, we use ray marching to discretize the radiance integration. For a

single point along the ray, the light intensity I; after passing through that point is given by I1 = a3 (5—11) , where a;
is the opacity of the point, c; is the predicted emission radiance at that point, and o7 is the attenuation coefficient at

that point. When there are multiple points, the light intensity at each subsequent point takes into account the light
from previous points. For example, for two points, Iy = as (5—22) + (1 — ag)I;. The term (1 — ag)I; represents the

light that is transmitted from the first point to the second point. In general, for n points along a ray, the transmittance
n n
Ti: H(l—aj):ecz:p —ZO']'(S]'
j=i+1 j=i+1

and the final radiance of the ray

7

ci
I= ;Tiai (0_—)

This formula sums up the contributions of light from all the points along the ray, considering both the emission from

each point and the attenuation and transmission of light from previous points.

3.4.3 Pipeline
What NeRF learns

(Oli, i) = F@(xmya Z, 07 ¢)

g

=Y ﬁ (1 - aj)a; (i—)

i j=itl

Camera Rays

‘ Ray Marching
‘ Algorithm

)| @) |) | mae
-

Network i
Parameters b
< Loss
Gradient Descent 5

Ground-Truth

Image

5D Input Output Volume Rendering

Position + Direction Color + Density Rendering Loss

— (RGB.
(RGBo) \ iy .

o E09)—> I _ ’
Fo imd LT

RN ol

2

Ray 2

\

LR

2

Ray Distance

e 2 Trick of implemention

af://n1206

Hierarchical Sampling - Fine

Positional Encoding i
Sampling
® Positional encoding to map each input 5D coordinate into a higher dimensional Ray
space
O Learning in high-frequency mappings is difficult to learn
7(p) = (sin(207p), cos(2°7p), -- - , sin(2l"17rp). cos(ZL’lwp))
o Fourier Basis feature mapping allocates neurons to different spatial frequency bands
(frequency disentangling)

" 3D volume
300 g [7] Tancik20

Camera

(20) RGB (.y,2) > occupancy (2,0,%) = density (x.,) —RGB, density

e Summary

® |earn the radiance field of a scene based on a collection of calibrated images
o Use an MLP to learn continuous geometry and view-dependent appearance
® Use fully differentiable volume rendering with reconstruction loss

e Combines importance sampling and Fourier-basis encoding of 5D query to produce high-

fidelity novel view synthesis results

e Allows efficient storage of scenes (x3000 gain over voxelized representations)

3.4.4 Extentions

Thought: Remaining 2 main issue of the original NeRF:

+ Handling dynamic scenes when acquiring calibrated views — D-NeRF: Neural Radiance Fields for Dynamic
Scenes

* One network trained per scene - no generalization — PixelNeRF

DNeRF
NeRF D-NeRF
- Only applicable to rigid scenes + Applicable for rigid and non-rigid scenes
- 5D continuous function + 6D continuous function by considering
time-component as an additional input
- Requiring multiple views of a rigid scene + Requiring a single view per time instant for

non-rigid scenes.

(x,y.2,t) »I][][][l—» Ax,Ay,Az) (xAX} Ay, Z+AZ,0,0 —»I][]I]I]—» RGBO’)

120 Deformed Scene Scene Canonical Space Scene Canonical Space

The scene is represented in a 6D radiance field, incorporating 3D spatial coordinates (z, y, z), a time coordinate ¢, and
viewing direction (6, ¢). The deformation network ¥; plays a crucial role. It predicts the deformation field between
the scene at time ¢ and the canonical space (f = 0) and is defined as

Az, ift#0
‘I’t(””’t):{o iftio

where Az is the deformation vector. This network allows D - NeRF to model scene changes over time.

af://n1223
af://n1228

The canonical network ¥, predicts the color ¢ and density o in the canonical configuration. Given a 3D point z and
viewing direction d, it outputs: ¥, (z, d) — (c,0)

These values are essential for determining the appearance and transparency of points in the scene. Volumetric
rendering in D - NeRF is similar to that in NeRF but adjusted for dynamic scenes. The color of a ray C(p, t) passing
through the scene at time ¢ is calculated as:

hy
Clp,t) = /h T (b,)0 (o, 1)) c(p(h, 1), d)dh
where p(h,t) = z(h) + ¥t(z(h),t)

The transmittance T(h t) anng the ray from the near plane h,, to the current position h is defined as:
T (h,t) = exp (fh p(s,t)) ds) The values ofe(p(h, t),d) and o(p(h,t)) are obtained from the canonical

network W, after deformlng the point using W,;. In the overall D-NeRF rendering pipeline, for each pixel in the output
image at a specific time ¢, a ray is cast from the camera. The ray passes through the 6D radiance field. First, the
deformation network ¥; deforms the points along the ray according to the time - dependent deformation field. Then,
the canonical network ¥, predicts the color and density values for the deformed points. Finally, the volumetric
rendering equation is used to integrate the contributions of these points along the ray, considering the transmittance,
to obtain the final color of the pixel. This process is repeated for all pixels in the image to generate the rendered
image at time ¢. Thus, D-NeRF's rendering pipeline effectively combines deformation, canonical representation, and
volumetric rendering to handle dynamic scenes and enable the synthesis of novel views for scenes with moving or
deforming objects.

PixelNeRF

Location ‘
—_— —_— Color + Opacity
Image Feature '

MLP

The traditional NeRF optimizes the radiance field of each scene independently and requires many calibrated views. It
also uses a canonical coordinate frame. PixelNeRF, introduces several key improvements. It trains across multiple
scenes to learn a scene prior. This allows the model to generalize better and make more accurate predictions even
with a sparse set of views, which is crucial for the few - shot view synthesis task. Mathematically, while NeRF
represents a 5D mapping from spatial and viewing direction coordinates (z, y, 2, 8, ¢) to color and density (RGB, o)

(z,9, 2,0, ¢) (RGB o), PixelNeRF builds on this concept but with a different approach. It predicts a NeRF
representation in the camera coordinate system, which simplifies the process and makes it more adaptable to the
input images. In its architecture, PixeINeRF uses a CNN encoder to extract image features from the input images.
These features are then fed into an MLP along with the location information. The MLP outputs the color and opacity
values. This integration of CNN - based feature extraction and MLP - based prediction allows PixelNeRF to incorporate
a variable number of posed input views. For example, if only one or two images are available, the model can still
leverage the learned scene prior and the features from these images to generate a reasonable NeRF representation.

af://n1237

DreamDiffusion: Text to 3D synthesis

"a DSLR photo of a

peacock on a surfboard” lmagen
‘n £
P(light) 20,8 ~ U0, 1) i@l) 2o(2:li0)

_ normals n| _ shadmg] rendering
zdgbedo ! ! | colorc_| P(Lu.mu‘u. e~ N(0,1)
NeRF MLP(0) Backpropagate onto NeRT" weights -

g (zely;t)

Eo(Belyst) — €

DreamFusion uses a pretrained 2D text - to - image diffusion model to perform text - to - 3D synthesis. It initializes a
neural radiance field (NeRF) randomly. During training, it samples random camera and light positions. The NeRF
renders 2D images from these viewpoints. The Score Distillation Sampling (SDS) loss is computed based on the
difference between the noise predicted by the diffusion model for these rendered (noisy) images and the injected
noise. This loss is used to optimize the NeRF parameters via gradient descent. By minimizing this loss over many
iterations (e.g., 15,000), the NeRF is trained to generate 2D renderings that match what the diffusion model expects
for the given text prompt, ultimately resulting in a 3D model that can be viewed, relit, or composited in 3D
environments.

3.5 3DGS: 3D Gaussian Splatting

3.5.1 Overview

3D Gaussian Splatting (3DGS) is a method for representing and rendering radiance fields. Compared to NeRF, which
parametrize radiance densely, its idea is to parameterize the radiance field sparsely, only where the density is non-
zero. Instead of representing the entire 3D space densely as in some traditional methods or like the full-volume
representation in early neural rendering approaches, 3DGS uses 3D Gaussian blobs floating in space. Mathematically,

a 3D Gaussian function is defined as Gy (z — p) = ‘1] e~ 7@V @-P) \where z is the coordinate in 3D space, p
2n|V|2

is the mean of the Gaussian, and V' is the covariance matrix. In 3DGS, these Gaussians are used to represent the

radiance field. Each Gaussian blob has its own set of parameters (p, V) that determine its position, shape, and the
contribution to the radiance field.

GS representation Volume randering?

3D Gaussian Blobs
floating in Space

“Near Plane”

af://n1240
af://n1243
af://n1244

3.5.2 Pipeline

—

/V Projection \

. s, - / \

N Differentiable | —»
. .: ., —¥| Initialization [— Tile Rasterizer ¢ Image
. \
Adaptive A/
SfM Points 3D Gaussians :

Density Control | — Operation Flow ~ — Gradient Flow

¢ Initialization: The process starts with an initialization step. This may involve using Structure from Motion (SfM)
points to determine the initial positions and properties of the 3D Gaussians. The SfM points provide an initial
estimate of the 3D structure of the scene, which serves as a basis for placing the Gaussian blobs.

¢ Density Control: 3DGS focuses on areas of non - zero density. The density of the Gaussians is carefully
controlled. If a region has a higher density, more Gaussians are placed or adjusted to better represent the
radiance in that area. This density - based placement of Gaussians is a key difference from methods like NeRF,
which represent the entire volume.

e Projection: When rendering, the 3D Gaussians are projected onto the 2D image plane. Since Gaussians are
closed under affine transforms, an affine mapping ® = Mx + p (such as the cam2world matrix) can be applied.
For a 3D Gaussian Gy (z — p), after the affine mapping, it becomes
Gy (2 '(u) —p) = ﬁgMVMT(u — ®(p)), where w is the coordinate in the new (projected) space. And
when integrating along an axis, fR g%,(:c —p)dxy = g?}(:i: — p), which shows how the 3D Gaussian projects to a

2D Gaussian on the image plane. We can Using Rasterization Instead of Volume Rendering!

)

amera

e Rasterization: Instead of using volume rendering as in NeRF, 3DGS often uses rasterization. Rasterization is a
process of converting the 3D Gaussians into 2D pixels on the image plane. This can be more computationally
efficient in some cases, especially when dealing with scenes where the radiance field can be well - approximated
by a sparse set of Gaussians.

e Adaptive Operation and Gradient Flow: 3DGS includes adaptive operations to optimize the representation of
the radiance field. These operations can adjust the parameters of the Gaussians (such as their positions, shapes,
and colors) based on the error between the rendered image and the ground - truth (if available). The gradient
flow is used to update these parameters during the training process, similar to how neural networks are trained.

3.5.3 Comparison with NeRF

e Representation:

o NeRF represents the radiance field as a continuous 5D function (z, y, z, 6,) — (RGB, o), where (z, y, 2)
are spatial coordinates, (6, ¢) are viewing direction coordinates, and (RG B, o) are the output color and
density. It densely parameterizes the entire volume of the scene.

af://n1253
af://n1267

o 3DGS, on the other hand, sparsely parameterizes the radiance field using 3D Gaussian blobs. It only focuses
on regions with non - zero density, which can lead to more efficient representation, especially for scenes
with large empty spaces.

e Rendering Method:

o NeRF uses volume rendering with ray marching. The final radiance of a ray is calculated as
I=% T (%) where T; =[]}, ,(1 — o)) = exp (f i ajdj) . This involves integrating the
contributions of multiple points along the ray through a series of complex calculations.

o 3DGS uses rasterization, which is generally faster for scenes that can be well - represented by a sparse set of
Gaussians. Rasterization directly projects the 3D Gaussians onto the 2D image plane, simplifying the
rendering process.

e Training and Efficiency:
o NeRF requires training on a per - scene basis and often takes a relatively long time to train due to the

complexity of volume rendering and the need to optimize a large number of parameters for each scene. For
example, Mip - NeRF360 takes 48h to train.

o 3DGS can achieve relatively high - speed rendering with competitive PSNR values. For instance, some 3DGS -
based methods can train in a few minutes (e.g., 6 minutes or 7 minutes) and achieve PSNR values
comparable to or better than some NeRF - based methods, while also having high rendering frame rates
(e.g., 135fps or 93fps).

Mip-NeRF360 (0.071 fps)
Train: 48h, PSNR: 24.3 Train: 6min, PSN

Plenoxels (8.2 fps)

Train: 26min, PSNR: 21.9 Train: 51min, PSNR: 25.2

Chapter 4 3D Generation [Lecture 7, 8, 9]

This chapter focus on different techs that recover or generate 3D geometry, section 4.1 talks about how 3D
geometry (specially point cloud) is generated from images and section 4.2 talks about how mesh is recovered
from coarse point cloud representation. Section 4.3 includes modern pipelines that generate 3D object.

4.1 Single image to 3D [Lecture 7]

4.1.1 Overview

Task

. . https://arxi
Single image to (a) Normal map
v.org/pdf/2
depth map
012.06980

Input image

(b) Depth map

https://arxiv.org/pdf/2012.06980
https://arxiv.org/pdf/2012.06980
https://arxiv.org/pdf/2012.06980
af://n1291
af://n1294
af://n1295

Task

Single image to 3D P s 20 https://arxi
e N i
point cloud AT v.org/pdf/1
generation 612.00603
Input image Reconstructed 3D point cloud
Single image to https://arxi
implicit field v.org/pdf/1
function 802.05384

Input image Implicit field function F (X) =0

4.1.2 Synthesis-for-Learning Pipeline

For the task that takes single image as input and outputs a 3D object, information are not sufficient. Training deep
neural network to do the inference needs lot of data with labels. In this case, we need many image-3D shape pairs.
The fist solution is to use ToF or stereo sensors(Kinect, RealSence) and LiDAR to get real 3D data. The second solution
is to develop a synthesis pipeline. By rnedering object form the shape dataset, we can get synthesis 2D images - 3D
shape pairs for the training.

- .

Sensor Simulation _»@ %)
D O

Vision Sound Touch

Robotics
/ Foundation Model

'
'
'
'
D
]
'
'
'
'
'
'
'
'
'
'
'

0
g

3D Assets

(AIGC-Powered) Task and Motion Planning o
-

Action Language

...

ShapeNet: http://www.shapenet.org
Objaverse-XL (10M CAD): https://objaverse.allenai.org/

4.1.2 Single-image to Point Cloud

https://arxiv.org/pdf/1612.00603
https://arxiv.org/pdf/1612.00603
https://arxiv.org/pdf/1612.00603
https://arxiv.org/pdf/1802.05384
https://arxiv.org/pdf/1802.05384
https://arxiv.org/pdf/1802.05384
af://n1314
af://n1318

Pipeline

E.g., ConvNet+FC/UpConv

Nx3

Nx3

Point cloud has permutation invariance thus loss needs to be invariant to ordering of points! Following are 2 popular
distance metric for measuring 2 points sets.

e Earth Mover's Distance (EMD): Since point clouds are sets of orderless points, traditional L2 loss does not work.
EMD is used to measure the distance between two point sets. It finds a 1 - 1 correspondence between point sets.
dEMD(Sl’ S2) = min¢551—>52 ZzESl ||.’B - ¢(IE)|
differentiable except for a zero - measure set. Many algorithmic studies focus on fast EMD computation, and
there are parallelizable implementations on CUDA, as well as fast approximated EMD implementations.

2, where ¢ : S1 — Sy is a bijection. EMD is continuous and

e Chamfer Distance (CD): Another popular metric for point clouds. It is based on the nearest neighbor
correspondence for each point. The formula is
dop(S1,82) = Y45 minges, [— y|13 + 3,5, minges, || — y|[3. Itis also used as a loss function in the
learning process of single - image to point cloud reconstruction.

¢ Differences
o Calculation Principle:

= CD simply sums the closest distances without considering a global optimal matching. It is a more local -
based measure, looking at the nearest neighbor relationships for each individual point.

= EMD, on the other hand, finds an optimal global bijection (\phi) between the two point sets. It takes into
account the overall distribution and matching of points, aiming for a more globally optimal alignment.

o Sensitivity to Sampling:

= (D is insensitive to sampling. Changes in the sampling density of the point clouds do not significantly
affect its value, as it only focuses on the closest distances between individual points.

= EMD is sensitive to sampling. Since it depends on finding an optimal one - to - one mapping, variations
in the number or distribution of points (sampling) can greatly influence the calculated distance.

Inspiration of the 2 branch architecture:

Up sampling FC

L L =4 :
/ > o
- Many local structures are common

- Many local structures are common - Also some intricate structures

af://n1320

2 branch architecture visualization of 2 branch output

Smooth

Igpconl\lr
\\‘-m»‘ ranc N Tnput \ %
s L4 '
' : e
branch Mx3 Prediction \
Non-Smooth

Set union by array
concatenation

The paper adopt a two - branch architecture (e.g., ConvNet + FC/UpConv), where different branches are designed to
handle different aspects of the point cloud generation. The Upconv branch learns a smooth surface parameterization
from 2D to 3D consistent across objects. However the FC branch finds more ntricate structures which are more non-
smooth and change more.

Design of Upconvolution Branch Visualization

oordin(ate map Smooth parameterization from 2D to 3D/
nmn%. o T,
7 Consistent across objects

Nx3

D o

\ﬁﬁ?\:.;'— '

A

4.1.3 Single-image to Mesh
Designing Loss for Edge Prediction is Hard: Ambiguity

- Key observation: given vertices, there are many
possible ways to connect them and represent the
same underlying surface:

G=(V,E) G=(V,E"
One option is to first build a high-resolution intermediate representation, and then convert the point cloud to mesh.
(Section 4.2)
Editing-based Mesh Modeling

Key idea: starting from an established mesh and modify it to become the target shape.

Input image Deep Neural A pn

Network

Mesh template

Deform

Loss selection is crucial!

af://n1368
af://n1372

e Vertices Distance Metrics:

o Earth Mover's Distance (EMD): dgy/p(S1,S2) = ming.s, s, Y
measuring the dissimilarity between the two sets of vertices.

2es, 1T — @(2)||2- This metric helps in

o Chamfer Distance (CD): Use the CD to measure the distance between vertex sets.
dep(S1,82) = Y 4es, minyes, ||z — yll5 + 35,5, minges, |z — yl3.

e Uniform Vertices Distribution: Penalize flying vertices and overlong edges with the loss function
Lumis = Zp ZkeN(p) p — Kl
This encourages equal edge lengths between vertices and helps in obtaining high - quality recovered 3D

%, where p represents a vertex and N (p) is the set of its neighboring vertices.

geometry.

e Mesh Smoothness: Encourage the intersection angles of faces to be close to 180 degrees using the loss
L gnooth = Ei(cos 0; + 1)2, where 0; is the intersection angle of faces. This promotes a smoother mesh
surface.

e Normal Loss: Assume that vertices within a local neighborhood lie on the same tangent plane. Regularize the
edge to be perpendicular to the underlying ground - truth vertex normal. One approach to find the vertex normal
is to use the nearest ground - truth point normal as the current vertex normal. The loss penalizes the deviation of
the edge direction from being perpendicular to the vertex normal.

2, s.t. k € N(p)

1 b= Y g minglp—ay [P — Fima)]

—@ & &

Summary

The synthesis-for-learning pipeline utilizes easily-obtainable synthetic data to tackle challenging 3D visual
understanding tasks. It has been demonstrated that generating a 3D point cloud from a single image is feasible when
employing properly defined set metrics like Earth Mover's Distance (EMD) and Chamfer Distance (CD). However, there
exists natural ambiguity in single-image to 3D conversion. Regarding single - image to mesh, it can be accomplished
through template deformation, yet mesh reconstruction demands more regularizations to ensure accurate and high-
quality results.

4.2 Surface Reconstruction: Mesh from PC [Lecture 8]

The problem definition for this section is to reconstruct the triangle mesh surface given the original (noisy) (with or
without normals) point cloud.

Some Desired Properties of the Algorithm:

e Fast: The input point cloud may be large. We expect the computation to be fast.
e Robust: May recover the underlying surface structure even when the input point cloud is noisy

e QOutput mesh is desired to satisfy some geometric constraints

af://n1395
af://n1397

Manifold Watertight

* A manifold mesh is watertight if
each edge has exactly two
incident faces, i.e., no boundary
edges.

» Defines the interior, hence
the volume of a solid object

* Required by many
physical- simulation
algorithms:

» Amesh is manifold if it does not contain:
- self intersection
- non-manifold edge (has more than 2 incident faces)
- non-manifold vertex (one-ring neighborhood is not
connected after removing the vertex)

self intersection non-manifold vertex non-manifold edge - Estimate mass frOm density
* Auseful property for many subsequent - Collision between objects
geometry processing pipelines - Force simulation

- e.g., to add texture maps and ... -

Explicit Algorithm
Ball - Pivoting Algorithm

e Input: A point cloud and a hyper - parameter p.

e Assumption: Input points are dense enough such that a ball of radius p cannot pass through the surface without
touching the points.

e Principle for face formation: Three points form a triangle if a ball of radius p touches them without containing

any other points.

e Procedure:
o Start with a corner point and a p-ball.
o Verify potential edges (triangles) in the p-neighborhood.

o The ball pivots around an edge (triangle) until it touches another point, forming another triangle.

o The process continues until all reachable edges have been tried. Then start from another seed triangle until

all points have been considered.
e Radius - related issues:
o Appropriate radius: It can correctly connect points to form a proper mesh.

o Radius too small: Some edges will not be created, leaving holes.

af://n1414

o Large radius: Some points will not be reached when the curvature of the manifold is larger than 1/ p.

oo oo ¢ b

F F ¥ Y
i { = o1 |
N e |
' + = ¢ ;
} '1 ! 1 ' '
_f. | | . ¥ zl
.j ‘\ o e

(b) (c)

(a)

e Iterative Approach: Using multiple radii, iteratively connect the points. Small radii capture high frequencies, and

large radii close holes.

e Ambiguous Structures: Traditional rule - based methods (like the ball - pivoting algorithm) cannot handle
ambiguous structures (e.g., thin structures & adjacent parts) well. Defining a rule for structure estimation is
sometimes hard, and no single p value can separate some complex point cloud structures.

e Learning - Based Method: Train a network to filter out incorrect connections and utilize the Intrinsic - Extrinsic

Ratio to guide the training.

e Pros and Cons:
o Pros: Linear complexity (fast) and no dependence on normals.
o Cons: Can lead to non - manifold situations, and there is no watertight guarantee. Regarding robustness,

learning can improve it, but current learning - based methods still do not work well when the sampling

density is low.

Implicit Algorithms

e For a 3D space, we have:

o

Interior: F'(z,y,z) <0

o

Exterior: F(z,y,2) > 0

o

Surface: F(x, Y, z) = 0 (zero set, zero iso - surface)

o Example implementation: Signed Distance Function (SDF), F(z, y, z) = distance to the surface.
e Two basic steps of Implicit Meshing Algorithm

o Estimate an implicit field function from data.

o Extract the zero iso - surface.
Estimate an implicit field function from data.

1. Radial Basis Functions (RBF)

o Definition: Radial basis functions ¢.(z): function value depends only on the distance from a center point c,
i.e., ¢c(x) = ¢(]|]z — ¢||). Use a weighted sum of radial basis functions to approximate the shape:
f(z) =" wid(||lz — z4]|) + p(z), where pis a polynomial of low degree.

Weighted Sum of Radial Basis Transfer Functions

1.2

Output a

Input p

o Constraints: f(x;) = 0 is not enough as it may get the trivial solution f(x) = 0. So we use normal to add

off - surface points:
" flzi) =0
" f(:EZ + }\?L,) =
u f(xl —)\’l_’iz) = -

af://n1468

o Consistent Normals are Required

* Build graph connecting neighboring points
— Edge (i) exists if p; € KNN(p)) or p; € KNN(p))

* Propagate normal orientation through graph
— For neighbors p;,p;: Flip n; if n/'n; <0
— Fails at sharp edges/corners

* Propagate along “safe” paths (parallel normals)

— Minimum spanning tree with angle-based edge weights
wii = 1- |IliTni|
o Estimate Parameters Estimate Parameters

 Variables:
- n + [l variables on w, (RBF coef.) and c;
(polynomial coef.)
. Solve a linear system of 3n + [equations
- 3n: from the point, inside, and outside

- [: additional constraints to guarantee the
smoothness and integrability of f

CRIIONG

Aij=¢(|xi —xj|), i,j=1,...,N,
P,-’jzpj(x,-), i=1,...,N, j=1,...,€.

o Implementation Details:

= Use triharmonic basis functions ¢(r) = 3 for its extrapolation ability. Avoid using RBF with compact or
local support (e.g., Gaussian density).

= A third - order polynomial is practically good.

= Do not need to use all the input data points as RBF centers. Use a greedy algorithm to select a subset of
points. For noisy data, treat the linear equation as solving a linear square problem and add a
smoothness term.

o Pros and Cons:
= Pros: Global definition, single function, globally optimal.

= Cons: Global definition leads to global optimization, which is slow.
2. Moving Least Squares (MLS)

o Do purely local approximation of the SDF. The weights change depending on where we are evaluating.

O
O €))

o
o

o Polynomial least - squares approximation:

= For a general polynomial in 3D,
fEIl: f(z,y,2) = ap + a1z + a2y + asz + asx® + aszy + - - - + a.2%, f(x) = b(z)Ta, where
a= ((11,(12,) a*)T and b(m)T = (17may7 2 3;2’ TY,: "+, zk)

= |n MLS, we find a that minimizes the weighted sum of squared differences:
a, = argmin Y570 0(|lz — cml]) (b(cm)Ta — dm)?
a

MLS approximation using functions in II2

F(x)

~T™

i

T

F(x) = fo(x), fo=argmin » 6(le, —2|]) (f(cn) = dm)’

1
feHz m=0

o Weight Functions:
)
» Gaussian: p(r) = e~ 2, where h is a smoothing parameter.

Global least -

squares with linear
basis

MLS with (nearly)
singular weight function 4(,) = —

MLS with —'f\/\\/\
B(r)=e"nz o

approximating weight
function

= Wendland function: Defined in [0, k] and 6(r) = (1 — 7/h)*(4r/h + 1),0(0) = 1,0(h) = 0,
¢'(h) =0,0"(h) = 0.

= Singular function: 6(r) =

1

o for small €, weights are large near r = 0 (interpolation).

= The MLS function F' is continuously differentiable if and only if the weight function € is continuously
differentiable. In general, F'is as smooth as 6.
3. Poisson Surface Reconstruction

o Poisson surface reconstruction (Kazhdan M, Bolitho M, Hoppe H. “Poisson surface reconstruction.”
ESGP, 2006):

= Advantages: Robust to noise, adapts to the sampling density.
= Disadvantages: Over - smoothing.

o Screened Poisson surface reconstruction (Kazhdan M, Hoppe H. “Screened poisson surface
reconstruction.” ToG, 2013):

= Advantages: Sharper reconstruction, faster.

= Disadvantages: Assumes clean data.

Extract the zero iso - surface

1. Marching Cubes (3D) and Marching Squares (2D)
o 2D Marching Square:
= Give every cell a number based on which corners are true/false.
= Look up the contour in a look - up table and put the contour lines in the database.

= Determine the line end - points values and use linear interpolation to get a more accurate position.

8 4
! ‘13 ‘1" .1') .1_; L4 Look-up table contour lines
GivebevptrJy (‘ec:l a 1 2 o ol')_ O”- O
number based on < (Y
which corers are :> &5 On Qn Q6@ | |

& 0707079

true/false 11

—o

Case 2 Case 3

e

Case 5 Case 6 Case 7

ANIIENER!

[
Case 8 Case9 Case 10 Case 11

N

Case 14 Case 15

d Case 0

Look up the contour
lines in the database
and put them in

the cells

NE@!

R
50,
OOOI
\ooo,l
cocoe
£
4

Look at the original
values and use linear

interpolation to

determine a $
more accurate position

of all the line end-points

Pt | [k | ok |t

o—o0
Case 12

0
19
Z
T
—
w

o 3D Marching Cube:

= There are 28 = 256 cases in total. The first published version exploits rotation and inversion and only

considers 15 unique cases.
= Ambiguity: Ambiguity can lead to holes.

= Solution to Ambiguity: Considering more cases in the look - up table by watching a larger context.

KT
Sl

0 1 2 9 10 S
" & Case 10,11 Case 10.12 Case 102
3 4
Q 11 ? 12 7
Case 31 Case32 @ Caseann Case4.12 u Cuse 122

Case 611 Casc612 Case62

14

Case 13.1 Case 132 Case 133

s 6 Case 1201 Case 1213
V (a)
1 b
Case 13
- (b

)

Case 134 Case 135.1 “Case 1352

Case741 Case742

Explicit meshing Implicit meshing (e.g.,
(e.g., ball-pivoting) RBF, MLS, Poission)

Sensitive to Yes
normals
Watertight No Yes, in most cases
manifold
* Large-scale equations to
Complexity e estimate implicit function

* Marching cubes
* Dense voxelization

1. Using Neural Network to Approximate Implicit Field Function

o DeepSDF:

e .

xv2) [| | spF Code [] soF

—~ (leﬁ Z) e
(a) Single Shape DeepSDF (b) Coded Shape DeepSDF

= Single Shape DeepSDF: Use the network to overfit a single shape.

= Coded Shape DeepSDF: Use a latent code to represent a shape, so that the network can be used for
multiple shapes.

o Learning - Based Marching Cube: Such as Deep Marching Cubes: Learning Explicit Surface Representations

and Neural Dual Contouring.
o Sign Agnostic Learning of Shapes from Raw Data:
= Unsigned distance is easy to obtain (distance to the point cloud & triangle soup).

= Learn signed distance from unsigned distance ground - truth. Require a special loss function:
loss(0) = Eqp, 7(f(2;0), hy(z)), where x C R?is the input raw data (e.g., a point cloud or a
triangle soup), f(z;6) : R* x R™ — R is the learned signed function, D, is the distribution of the
training samples defined by x, h, () is some unsigned distance measureto x,and 7 : R x R, — R
is a similarity function. For example, 7¢(a,b) = ||a| — b|*.

Loss design 2d result

loss(@) = E,p 7 (f(x;a), hl(x))

. hl(x): some unsigned distance measure to y

. 0 zeX
ha(z) = min |z — B mea={} 253 n

« 7:RXR, — R: asimilarity function

ta,b) = lla| - b|”

= There are two local minima in the loss function. We prefer the case where f is a signed function and | f]|
resembles h, () to use marching cube. We can pick a special weight initialization 6° so that
f(z;0°) = ¢(||z|| —) (signed distance function to an r - radius sphere) to avoid convergence to the

unsigned local minima.

4.3 Modern 3D Generation Pipeline [Lecture 9]

4.3.1 GAN

2D GAN

Real images Sample

ss0|
10jeuiwlIosiq

Discriminator

— Generator P

n
ss0|
10jeIBUID)

Random input

Lean(G,D) = Ey[log D(y) + E; ;[log(1 — D(G(z, 2))]

GAN's learning Objective: Generate output that is indistinguishable from a ‘real’ example

af://n1629
af://n1630
af://n1631

Pipeline

!

-—)

A

|
|
|
o
7

Latent vector Generator

Generated shape

17
Iﬁ — Real?

Discriminator

N
|

”

Real shape (sampled from ShapeNet)

Generator

Latent
space

A= (@
@ 5 s

128x16x16x16

/
/
/

G(z) in 3D Voxel Space
64x64x64

Shape
space

64x32x32x32

Latent
vector

Latent Vector Arithmetic

=

F-fe o

+

Generator: Incrementally increase resolution via convolutions and upsampling layers.

Issues in 3D GAN

GANs don’t maximize likelihood of
dat

Common issue: mode collapse

fake real % $ $
SamplingSpectrum : i
a : c d
t sampling-insensitive () H (b) () ()
(e.g. PointNet-Max) —
sampling-aware
~ (e.g. PointNet-Mix/Attention) _
y sampllug oversensitive
(e.g. PointNet++, DGCNN) _

4.3.2 Autoregressive Models

2D Autogressive Model

Definition 2d Pipeline

p(. =)

Training: maXExND log pg(l‘)

Inference: Sample images, one pixel at a time

Transformer

pls) = [T plsilsci)

i
\‘ X
argmin. 2 |2 — = EE
quantization [=]s] :
nooo -

Step 1: Learn a ‘codebook’ of discrete patch representations

Step 2: Learn transformer-based Autoregressive models

af://n1634
af://n1645
af://n1653
af://n1654

Pipeline

Split
into

Patches ; . ﬁ Gather

¢ into
' 5 Grids
> &

: Quantize :

Encode Decode
Independently Jointly Reconstruction
Incomplete
Empty Sequence Sequence Transformer

Complete Sequence

m

Non-Sequential Autoregressive Modeling

_@

uery

4.3.3 Diffusion Models

2D Diffusion

Pipeline -

) e Po(Xe-1]x¢)
Fixed forward diffusion process @ — e — @ @ e @
; ; - ey S

end for
return xo

Vo ||€ — €o(Varxo + vI—are, t)||*

until converged

Noise g .
q(x¢-1/x) is unknown
Generative reverse denoising process 1 Training 2 Sampling
1: repeat e
§: Xo ~Uq(;(n) @ ™ ; ,Z»thT(o
)) . ;e Uniform((1, .., ot
synthesis by progressive denoising & e~ N(OT) 3 2~ N, ”‘“>‘ Slre s =0
5: Take gradient descent step on 4 xe= e (xx Tt eolxe, t))+mz
-
6:

2

Train a neural network to learn the reverse process

Point Cloud Diffusion

Algorithm 1 Training (Simplified)
1: repeat
2 Sample X ~ ga(X™)
3 Sample z ~ g, (2| X)
4: Sample t ~ Uniform({1,...,T})
s Samplezl”, ... 2% ~ g(=®|2®)
6:
7
8
9:

Li 30, Dk, (q(z?*”|Gf¢),z.(°))||ps(z§'7”Imﬁ”,z)))

Lz + Dxw(ae(2|X) [p(2))
: Compute Vg (L: + %L,). Then perform gradient descent.
: until converged

Conditioned Diffusion / Stable Diffusion

e Recapin 2D:

af://n1662
af://n1664
af://n1665
af://n1673
af://n1675

'A zombie in the
style of Picasso’

'A street sign that reads
“Latent Diffusion” "

&
17

Pixel Space

Latent Space

Diffusion Process

6onditionina

emanti
Maj

Denoising U-Net €g

Text

Repres
entations

denoising step crossattention

Ezo,ywﬁ(mo,y),ENN(o,I) [||E — Gg(dtwo + Bt&',gl t) H2:| (22)

switch

skip connection concat

ﬂ
N —

I
LATENT
DIFFUSION

_ATETEN
 DIFFUSION

High-Resolution Image Synthesis with Latent Diffusion Models. Rombach et al.

e 3D

Input

@B

Condition

“a brick
house”

feed condition information y
To de-noise network in training

P
Encoder T —1) x C[Denoise] Decoder Output
Z
Diffusion b
process D A-_
/
o
™ Dropout
|:| ® Concat. - Skip
connection
Task Denoising
encoders 3D UNet
J

3D Diffusion model in latent space, with conditioning via attention layers

4.3.4 Generation without 3D Training Data

Pipeline

Key idea is that generate 3D representations such that their renderings are indistinguishable from real sample.

Differentiable
Generator Renderer
Latent Variable | ey Generated 3p | —————% Generated 2D
Prior on

Viewpoints

Adversarial Loss

e 2

Discriminator

Real 2D Images

af://n1683
af://n1684

3D Generator

Const 4x4x4x512
LRelu

Conv3D 3x3x3
Conv3D 3x3x3

View Transformation

3D
TRANSFORM

Conv3D 3x3x3

Learned projection and rendering

Conv3D 3x3x3

Conv2D 3x3
Conv2D 3x3
Conv2D 3x3

Camera pose
;\MLP} ;‘MLP/] 0 ' MLP/} ;‘MLP/E ;\MLP/}
7 il T 1 T i)
Key Idea: Generate 3D representations such that —
their renderings are indistinguishable from real samples
Text conditioned 3D Generation
Differentiable
Renderer Likelihood Loss
3D) —fp Rendered 2D B e Diffusion Model 4 Text
Representation Conditioning
¥
@ Stable Diffusion
Il “A high quality image of
— 4 —
@ DALL-E 2 a peacock”
rendering

Allows 3D generation for complex structures

Not a ‘generative’ model in a probabilistic sense — no distribution over 3D is inferred

(relatively) compute intensive — per instance optimization

4.3.5 Part-based 3D Generation

Semantic-level Synthesis and Assembly

RECONSTRUCTION

Semantic-part-aware

: 1
i embedding space
s i " / 3
Discriminator = ey e
l !l Decomposer Composer / T 3
—». Part-aware _,. Part-based
| : {1\ Quali sh
- Generator (+ 3;‘:225 emm?d-m ,,,.Wm» \ LEG EXCHANGE
Local ni
Discriminators 11 # full stapes
?] * seats "
® backs & X
32%32x32 — * legs t
shapes * amests
Global-to-Local GAN (G2LGAN)

elc

B

Dubrovina et al., “Composite Shape Modeling
via Latent Space Factorization”, ICCV 2019

Wang and Schor et al., “Global-to-Local

Generative Model for 3D Shapes”, Siggraph Asia
2018

e For fine-grained parts, we need coarse-to-fine generation

af://n1688
af://n1691
af://n1692

base - -2 - back
regular surface < frame
leg <+ leg=——runner - bar - bar
I d J
o<
Mo et al., “StructureNet: Hierarchical Graph Networks
for 3D Shape Generation’, Siggraph Asia 2019
Hierarchical Generation
z z
A encoder ? decoder d | @graph skip connections h
e h P - N
graph 8“‘13 0. 75 T o
o oo d 60— o IR e
SR T W T — “géo ~ o
e / N \ e 7 d/ \d \ d \ message pass. p(')];l)?i)rgg /
‘graph graph geo graph geo raph geo
N S, — i N
B I e v L f’\ (A
0 a0 | Ggeo e\graph WSk : dgeo grﬂphdgeo ° o ° e R
N o / / Lot T T o ‘ / LT °'gparts"° o'gxp"" °_gxe"° o
TR e O SRS ’\/{0 e °o° ° °
T e D Y I e : /\
egeo egeo egeo egeo dgeo dgeo dgeo dgeo 0«0 - 0«0
VN \ | LR ¥ l o 00 5 —>gskip_>o °
0 o
N o) N N message pass.
NHNNHNH \ 2 SINSISAIR R N sep /

StructureNet represents shapes as a hierarchy of graphs S = (P, H, R) for 3D shape generation. It uses a
Variational Autoencoder with hierarchical graph networks for encoding and decoding. The encoder maps shapes to a
latent feature vector z through a geometry encoder for leaf nodes and a graph encoder for intermediate nodes. The
decoder transforms z back into a shape. The VAE is trained with a loss function

Liotal = Esus[Lr(S) + Lsc(S) + BL,(S)], which includes reconstruction, structure consistency, and variational
regularization losses. This framework enables various applications such as shape reconstruction, generation,
interpolation, abstraction, and editing, outperforming baseline methods in experiments.

Chapter 5 3D Comprehension [after Lecture 10]

This chapter introduces networks and pipelines that comprehends and analysis 3D object.

5.1 3D Backbone [Lecture 10]

5.1.1 Overview

To understand 3D data (voxel, point cloud), special network design is necessary. 3D backbone takes 3D data as input
and is the foundamental of down stream tasks like object classification, object part segmentation and semantic scene
parsing.

5.1.2 Voxel Networks

e Voxelization: Represents the occupancy of regular 3D grids. A 3D CNN on volumetric data uses 4D kernels.
However, it has a complexity issue. For example, the input resolution of 3D voxel data in 3DShapeNets (2015) is
30 x 30 x 30 with 27000 elements, compared to AlexNet's 2D input resolution of 224 x 224 with 50176
elements. There is also information loss in voxelization.

af://n1698
af://n1713
af://n1716
af://n1717
af://n1719

30

30

30

mlpconv mipconv mipconv
(48, 6, 2; 48; 48) (160, 5, 2; 160; 160) (512, 3, 2; 512; 512)
e Solutions to Complexity and Information Loss

o Learn to Project: Use “X - ray” rendering + Image (2D) CNNs, which have a very low number of parameters
and low computation.

Anisotropic Probing
L

30 30 3g 3

ffss Image-based CNN i Softmax
1@%3 'E = .->ﬁ§_} e (Network In Network) Loss
5 / ;

|

30 30 30
30 §

40

o Sparsity of 3D Shapes: Store only the occupied grids and constrain the computation near the surface.
Sparse convolution is used, and there are several implementation libraries like SparseConvNet,
MinkowskiEngine, TorchSparse, and Tensorflow3D. Octree is another approach, which recursively partitions
the space with each internal node having eight children and uses a hash table for neighborhood searching.
It shows better memory efficiency compared to voxel CNNs.

« Each internal node has exactly eight children
» Neighborhood searching: Hash table

|
Y/ \\\\ Octree Octree Octree
/ level 1 level 2 level 3

! A

“ oét//do\c;\b

/%ﬂ\\\ %\\\\k\\\ ' '
| 74 AN\ NS

7 // E NS

- 3“% O O) \Q

Jr C0 323 1283
+
5.1.3 Point Networks
e PointNet
D
—_—
Point cloud
N g Deep Neural Network

feature vector

2D array representation

af://n1733

o A point cloud consists of N orderless points, where each point is represented by a D-dimensional

coordinate. Mathematically, we can represent a point cloud as a set of points {z1, za, -+, Z N}, with

z; € RP. When processing point clouds with a deep neural network, the network's output should be
invariant to the permutation of these IV points. That is, for any permutation 7 of the indices {1,2,--- N},
the function f(z1, za, - -, zn) should satisfy f(z1,Z2, ,ZN) = f(Tryy Tryy* "+ s Ty)-

Constructing Symmetric Functions

o PointNet constructs symmetric functions in the form of f(z1,zg, -, z,) = yo g(h(z1),- -, h(zy)),

where g is a symmetric function. Common examples of symmetric functions g are the maximum operation
g(z1, @9, -+, z,) = max{zy, s, -+, x,} and the sum operation
9(z1, @2, Tn) =T1+ T2+ + T

h is a function implemented by a Multi - Layer Perceptron (MLP). For each point z; in the point cloud, h(z;)
maps the original point features to a new feature space. After that, the symmetric function g aggregates
these new - mapped features. For example, if g is the max operation, it selects the maximum value among
h(z1), h(z2), -, h(z,), which is invariant to the permutation of the input points.

v is another function, often implemented by an MLP, which further processes the output of g to generate
the final feature representation.

Implementation Details

o Inthe implementation of PointNet, after the input points pass through the initial transformation (using T -

input points

Net for 3D coordinate transformation and feature transformation), they are fed into MLPs for feature
extraction. For example, the input points first go through an MLP with output dimensions (64, 64) and then
another MLP with output dimensions (64, 128,1024).

The global feature is obtained by applying a max - pooling operation over the output of the last MLP.
Mathematically, if the output of the MLP for IV points is Y1, Y2, - -, Yn, Where y; € R1024 the global
feature Ygiobal = max{y1, Y2, -, YN }. Since the max - pooling operation is a symmetric function, the
resulting global feature is invariant to the permutation of the input points. This global feature can then be
used for tasks such as classification or further processed for segmentation tasks in PointNet.

input mlp (64,64) feature mlp (64,128,1024) max mlp
transform transform > pool 1024 (512,256,k)
s < 3 3
A —> & shared Z % shared nx1024
' globa) feature "
' > s
: .~ local | gl,ebal output scores
| i 4
............ ,__,__,__,_,________,____,‘_embedldma ____--—""feature
. o P TR T
transform : transform : :]
: i =
matrix : ﬁ § 4
multiply |- n|x 1088 shared = shared g 5
........................ & LI é e. 3
—p| g
mlp (512,256,128) mlp (128,m)

Visualizing global point cloud features

lm % i
Original Shape: “‘w i - % C
4
S

Critical Point Set:

Upper bound set: "r- ‘ - “ -:'0

Limitation of PointNet

Hierarchical feature learning Global feature learning * No local context
Multiple levels of abstraction Either one point or all points for each point
%é B2 A% (1,2,3) MLP » Global feature
i \'_ & & @34 — me ||\ depends on
Z el e . 5 absolute
i CL: Sl L..].;UEL : .
g i coordinate. Hard

\ g (1,3,1) to generalize to

unseen scene
3D CNN (Wu et al.) PointNet (vanilla) (Qi et al.) Configurations!

e PointNet++

o Basic Idea: Recursively apply PointNet at local regions to achieve hierarchical feature learning, local
translation invariance, and permutation invariance. It uses set abstraction (farthest point sampling +
grouping + PointNet) for hierarchical point set feature learning. It can be applied to classification and
segmentation tasks. For example, in non - Euclidean spaces for animate shape recognition, it can generalize
well when using intrinsic point features (HKS, WKS, Gaussian curvature) and intrinsic distance metric

(geodesic).
e Sampling Issues in Point Clouds
o Sampling Caused Domain Gap: Sampling in point clouds can cause domain gaps, for example, between
point clouds captured by different - beam LiDARs.
o Solutions
= Randomly throw away some points in the training data by a dropout layer (as in PointNet++).
= |earn to canonicalize the point cloud, such as using a completion network and sparse voxel labeling
network to transform the point cloud to a canonical domain.

= Use density - aware convolution like Monte Carlo Convolution.

	3D Vision Computing
	Introduction
	Chapter1 Geometry: Curves&&Surfaces [Lecture 1]
	1.1 Curves
	1.1.1 Parameterization
	Definition
	Application

	1.1.2 2D
	\|T(s)\| \equiv 1
	N(s):= JT(s)
	Frenet Equation
	\mathbb{R}^2 Curve Theorem

	1.1.3 3D
	Osculating Plane
	Curvature \kappa & Torsion \tau
	Frenet Frame
	\mathbb{R}^3 Curve Theorem

	1.1.4 Geometry Meaning

	1.2 Surface
	1.2.1 Surface Parametrization
	f: U \to \mathbb{R}^3
	Saddle Example

	1.2.2 Differentiable Manifold
	Df_p
	Saddle Example-Continue

	1.2.3 Curvature
	N_p
	Cylinder Example

	DN_p
	\mathbf{\kappa}
	Cylinder Example-Continue

	\kappa_1 \kappa_2
	Shape Operator
	Cylinder-example-continue

	1.2.4 First Fundamental Form
	First Claim
	Definition
	Local Isometric Surfaces Example
	Second Fundamental Form

	1.2.6 Gaussian and Mean Curvature

	Chapter2 Representation && Transformation [Lectue 2, 3]
	2.1 Meshes
	2.1.1 Formulation

	
	2.1.2 Storage
	Triangle List
	Indexed Face Set

	2.1.3 Normals
	2.1.4 Curvatures
	2.2 Point Cloud
	2.2.1 Representation
	2.2.2 Application-based Sampling
	(point cloud) Uniform Sampling
	(point cloud) Farthest Point Sampling

	2.2.3 Voxel Down sampling
	2.2.4 Estimating Normals
	Least-square Formulation

	2.3 Implicit Representations
	2.4 Homogeneous Transformation
	2.5 Rotation
	2.5.1 Some Mathematics
	2.5.2 Parameterizing Rotation in NN
	2.5.3 Three kinds of Rotation representations

	Chapter 3 Reconstruction from Multi-view [Lecture 4, 5, 6]
	3.1 Basics [Lecture 4]
	3.1.1 Camera Model: Mapping 3D to 2D
	Conventions
	Intrinsic
	Extrinsic
	Imaging Formula

	3.1.1* Camera Calibration
	3.1.2* Depth Images: 2.5D Representation
	3.1.3 Epipolar Geometry
	Epipolar constraint
	Relating Two Views

	3.2 SfM: Structure from Motion [Lecture 4]
	3.2.1 Overview
	3.2.2 Pipeline
	3.2.3 Related
	3.2.4 Learning Based SfM
	SuperPoint: A Learned Detector and Descriptor
	SuperGlue: context aggregation + matching + filtering

	3.3 MVS: Muti-View Stereo [Lecture 5]
	3.3.1 Overview
	3.3.2 Classical Pipeline
	3.3.3 Learning-based MVS
	MVSNet: A first pipeline
	Improvements

	3.4 NeRF: Neural Radiance Field [Lecture 6]
	3.4.1 Implicit Representation
	3.4.2 Overview
	Volumetric Light Transport Model

	3.4.3 Pipeline
	3.4.4 Extentions
	DNeRF
	PixelNeRF
	DreamDiffusion: Text to 3D synthesis

	3.5 3DGS: 3D Gaussian Splatting
	3.5.1 Overview
	3.5.2 Pipeline
	3.5.3 Comparison with NeRF

	Chapter 4 3D Generation [Lecture 7, 8, 9]
	4.1 Single image to 3D [Lecture 7]
	4.1.1 Overview
	4.1.2 Synthesis-for-Learning Pipeline
	4.1.2 Single-image to Point Cloud
	Pipeline

	4.1.3 Single-image to Mesh
	Editing-based Mesh Modeling
	Summary

	4.2 Surface Reconstruction: Mesh from PC [Lecture 8]
	Explicit Algorithm
	Implicit Algorithms

	4.3 Modern 3D Generation Pipeline [Lecture 9]
	4.3.1 GAN
	2D GAN
	Pipeline
	Issues in 3D GAN

	4.3.2 Autoregressive Models
	2D Autogressive Model
	Pipeline

	4.3.3 Diffusion Models
	2D Diffusion
	Point Cloud Diffusion
	Conditioned Diffusion / Stable Diffusion

	4.3.4 Generation without 3D Training Data
	Pipeline
	Text conditioned 3D Generation

	4.3.5 Part-based 3D Generation
	Semantic-level Synthesis and Assembly
	Hierarchical Generation

	Chapter 5 3D Comprehension [after Lecture 10]
	5.1 3D Backbone [Lecture 10]
	5.1.1 Overview
	5.1.2 Voxel Networks
	5.1.3 Point Networks

