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Figure 1: Overview of the EgoReasoner Framework.

Abstract

Current Multimodal Large Language Models (MLLMs) exhibit limitations in em-
bodied reasoning, particularly in tasks requiring long-horizon planning, temporal
logic, and spatial understanding. To address these challenges, we introduce the
Ego-embodied Reasoner (EgoReasoner), a framework that enhances the planning
capabilities of MLLMs through a multi-stage training pipeline. First, we synthesize
a dataset of expert trajectories using a hybrid of rule-based logic and Large Lan-
guage Model (LLM) calls. This data is then used for Supervised Fine-Tuning (SFT)
to instill foundational planning and action-formatting abilities in the agent. To
further refine its decision-making, we employ Group Relative Policy Optimization



(GRPO), a reinforcement learning technique that optimizes the policy by lever-
aging relative preferences between groups of sampled trajectories. We evaluate
our method on interactive embodied search tasks from the EmbodiedBench suite.
Our results show a significant performance gain, with the success rate improving
from a 10.9% zero-shot baseline to 22.2% after SFT, and reaching 26.6% after
GRPO refinement. This demonstrates the effectiveness of our approach in trans-
forming smaller-scale MLLMs into competent agents for long-horizon embodied
reasoning.

1 Introduction

Multimodal Large Language Models (MLLMs) have demonstrated impressive abilities in language
grounding and visual understanding, making them attractive candidates for embodied reasoning and
decision-making [1, 2]. However, when deployed in long-horizon embodied tasks, existing MLLMs
still face significant limitations: they struggle with temporal reasoning, spatial understanding, and
common-sense planning across multi-step decisions [3, 4]. This motivates our project to explore how
to effectively enhance such capabilities within a computationally efficient framework.

We propose a lightweight yet effective pipeline for embodied agents built on MLLMs, aiming to
improve decision-making through structured supervision and reinforcement learning. Our hybrid
training framework begins by synthesizing high-quality expert interaction trajectories using a com-
bination of rule-based logic and LLM-generated actions [5, 6]. These demonstrations are used for
Supervised Fine-Tuning (SFT) on a visual-language model, instilling structured behavioral priors.

To further enhance long-horizon reasoning [7, 8], we utilize a reinforcement learning strategy called
Group Relative Policy Optimization (GRPO) [9]. GRPO enhances policy learning by leveraging
relative comparisons among groups of trajectory segments, facilitating more stable and effective
optimization. This framework is validated on interactive embodied search tasks that require the
agent to reason over space, time, and past actions. Our key insight is that even relatively small-scale
MLLMs can be transformed into competent embodied agents through the combination of high-quality
synthetic data, supervised pre-training, and reinforcement-based fine-tuning.

2 Related Work

2.1 Deep Thinking and Reasoning Models

The emergence of deep-thinking models such as OpenAl ol, DeepSeek-R1, and related systems has
revolutionized complex reasoning tasks, particularly in mathematical and coding domains. These
models employ a "slow-thinking" paradigm where they generate extensive reasoning chains before
producing final answers, achieved through sophisticated reinforcement learning training on reasoning
trajectories. However, extending this paradigm to embodied scenarios presents unique challenges.
Unlike mathematical reasoning that relies primarily on logical deduction, embodied tasks require
spatial understanding, temporal reasoning across interaction histories, and continuous adaptation to
environmental feedback. Recent work by Zhao et al. [2] introduces Embodied-R, which addresses
computational constraints by decoupling perception and reasoning through a collaborative framework
combining large-scale vision-language models for perception with smaller language models for
reasoning, trained via reinforcement learning with novel logical consistency rewards.

2.2 Tool Use and Interactive Clarification

A critical aspect of embodied reasoning involves effective tool use and handling of ambiguous or
incomplete user intents. Traditional tool learning frameworks assume explicit and unambiguous
queries, which diverges from real-world scenarios where users often provide incomplete or imprecise
instructions. Zhang et al. [10] address this challenge through ASKTOACT, a self-correcting clarifica-
tion framework that leverages the structural mapping between queries and tool invocation solutions.
Their approach generates high-quality training data by systematically removing key parameters from
complete queries while retaining them as ground truth, enabling automated construction of clarifi-
cation dialogues. The framework incorporates error-correction mechanisms that allow models to



detect and recover from mistakes during multi-turn interactions, achieving significant improvements
in intent recovery and clarification efficiency.

2.3 Embodied Spatial Reasoning

Spatial reasoning represents a fundamental challenge in embodied Al, requiring models to perceive
and reason about spatial relationships from sequential visual observations. Current approaches often
struggle with the complexity of spatio-temporal relationships in video data and the distinct character-
istics of egocentric visual observations. The Embodied-R framework [2] tackles these challenges
through a collaborative architecture that separates perception and reasoning components, enabling
efficient processing of continuous visual streams while maintaining computational tractability. Their
approach demonstrates that small-scale language models can achieve comparable performance
to much larger multimodal reasoning models when properly trained with reinforcement learning
techniques that emphasize logical consistency.

2.4 Training Paradigms for Embodied Agents

The development of effective embodied agents requires sophisticated training paradigms that can
handle the complexity of interactive environments. Recent approaches have explored various combi-
nations of supervised fine-tuning (SFT) and reinforcement learning (RL) to enhance agent capabilities.
Zhang et al. [1] present a comprehensive three-stage training pipeline that progressively builds agent
capabilities through imitation learning, self-exploration via rejection sampling, and self-correction
through reflection tuning. This iterative approach addresses the challenge of learning from both
expert demonstrations and self-generated experience, enabling models to develop robust reasoning
patterns for long-horizon tasks.

Our work builds upon these foundations by proposing a lightweight yet effective pipeline that
combines high-quality synthetic data generation with a hybrid training framework incorporating both
SFT and GRPO. This approach addresses the computational efficiency concerns raised by previous
work while maintaining the sophisticated reasoning capabilities demonstrated by deep-thinking
models, specifically tailored for long-horizon embodied interactive tasks.

3 Methods

We formulate the problem as a sequential decision-making task. At each timestep ¢, the agent
receives a visual-language observation o; € O and chooses an action a; € A according to its policy
7o, which is instantiated as an MLLM. The interaction history is h: = {0, ag,...,0:+}. Given a
language-grounded goal g and a task prompt L, a full trajectory is 7 = {g, 09, @g, - - - , On, @y }. Our
goal is to train 7y to generate trajectories that successfully complete the task. The overall framework
is depicted in Figure 1.
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Figure 2: Overview of Model Architecture
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The main idea of EgoReasoner method is to finetune an MLLM (e.g. Qwen-VL in practice) leveraging
both imitation learning (SFT) and reinforcement learning (GRPO),

3.1 Trajectory Synthesis and Supervised Fine-Tuning (SFT)

To bootstrap the training process, we first construct a dataset of expert-like demonstrations using a
hybrid system. This system combines deterministic, rule-based logic for common sub-tasks with
LLM calls to generate semantically rich and diverse action sequences. This approach allows us to
generate high-quality training data without requiring expensive human annotation.

Specifically, the synthesis process contains three main steps:

 Instruction Synthesis: We pre-define four types of task templates including search, manipulation,
transportation and composition. Each time we apply the sampled template with also sampled
objects and then check scene consistencies and constraints that determine whether the whole
description is valid and tractable. To enhance the diveristy of instructions, we also exploit LLMs to
modify the styles and difficulties of generated instructions.

* Action Sequentialization: Given the scene (in simulator), an affiliation graph can be built based
on the co-relations of scene objects. By traversing the affiliation graph under the guidance of
instruction can we generate the key actions in sequence. [1, 2]

¢ Thought Insertion: Prior works in psychology have shown the bayesian model of five types of
human thoughts: analysis, planning, reflection, spatial reasoning and verification. [11] We use
Monte Carlo sampling to randomly walk on the probabilistic graph and generate thoughts via
LLMs.

Trajectories
| : |

Instruction Synthesis Action Sequentialization Thought Insertion

Figure 3: SFT Data Engine

Using these synthesized trajectories, we have collected ~10K trajectories and can perform SFT on
our base model, Qwen2-VL-Instruct-7B. The objective of this stage is to teach the model structured
reasoning patterns and the correct action format (e.g., a <Think>...<\Think><Act>...<\Act>
structure). This pre-training serves as a crucial initialization for the subsequent reinforcement learning
phase. We utilize the Swift framework for the SFT process.

3.2 Refinement via Group Relative Policy Optimization (GRPO)

Following SFT, we further enhance the agent’s reasoning abilities using GRPO. GRPO is a preference-
based RL algorithm that operates by comparing groups of trajectories. For a given task prompt, we
generate multiple candidate trajectories using the current policy. These trajectories are then evaluated
and ranked, and the relative preferences are used to update the policy. This group-wise comparison
provides a more robust and stable learning signal than pairwise comparisons or absolute rewards. We
explore two variants for generating rewards and preferences. [9]
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Figure 4: GRPO Object

3.2.1 GRPO with Imitation Learning (Offline)

In this offline paradigm, we leverage the expert trajectories from our synthesized dataset. The reward
function is designed to align the agent’s behavior with the expert demonstrations. For a reference
action sequence of length &k and a generated prefix that matches the reference for n steps, we define a
multi-step accuracy reward:

n(n+1)

Raccuracy = k(k T 1)

This reward encourages the model to not only select the correct first action but also to produce longer,
correct sequences. An additional format reward penalizes outputs that deviate from the required
thinking and action template. The final reward is a weighted sum of these components. This approach
allows us to fine-tune the model without requiring continuous interaction with a live simulator.

3.2.2 GRPO with Online Simulation

To enable the agent to learn from its own mistakes and explore novel strategies, we also implement an
online version of GRPO. In this setup, for each training step, the agent’s generated action sequence
is executed in a live simulator instance. The reward is then computed based on the outcome of this
execution. The total reward Ry, is a composite signal:

* Format Reward: Penalizes incorrectly formatted outputs, as in the offline version.

* Task Completion Reward: A large positive reward is given for successfully completing the task,
with a small penalty for failure.

* Length Penalty: A minor penalty is applied to overly long action sequences to encourage efficiency.

» Repetition Penalty: Repeated, oscillatory behaviors (e.g., moving back and forth) are penalized to
promote more effective exploration.

4 Experiments and Results

4.1 Experimental Setup

Benchmarks We conduct our evaluations on selected subsets of the EmbodiedBench platform [12],
a comprehensive benchmark for embodied vision-language agents. We focus on two representative
subsets:

* EB-ALFRED: Emphasizes multi-step interactive task completion with natural language instruc-
tions in realistic household environments.

* EB-Habitat: Leverages the Habitat simulator for complex indoor navigation and interaction tasks.

These benchmarks provide a balanced evaluation of an agent’s reasoning, planning, and perception
skills in visually rich, interactive settings.

Baselines We compare our EgoReasoner-7B model against several strong baseline MLLMs, includ-
ing Qwen2-VL-7B-Instruct, Qwen2-VL-72B-Instruct, Qwen-VL-Max, and the Embodied-Reasoner-
7B model [embodied-reasoner].



4.2 Performance Evaluation

First, we evaluated the stage-wise improvement of our training pipeline. As shown in Table 1, our 7B
model starts with a zero-shot success rate of 10.9%. After SFT, the success rate more than doubles to
22.2

Table 1: Stage-wise Performance Improvement of EgoReasoner-7B. Success Rate (%) is reported on
a held-out set of embodied search tasks.

Model Stage Success Rate (%)
Zero-shot (Base Model) 10.9
After SFT 22.2
After GRPO (Final Model) 26.6

Next, we compare our final model with other state-of-the-art MLLMs on the EB-ALFRED and
EB-Habitat benchmarks. As shown in Table 2, our EgoReasoner-7B significantly outperforms
other models of similar size (Qwen2-VL-7B and Embodied-Reasoner-7B) and achieves performance
competitive with, and in some cases exceeding, much larger models like Qwen2-VL-72B. Specifically,
on EB-ALFRED, our model achieves a 40.1% success rate, surpassing the Embodied-Reasoner-7B
by 1.6 percentage points. These results highlight our framework’s ability to instill powerful reasoning
capabilities into a relatively small model. A qualitative example of our agent’s reasoning process is
shown in Figure 5.

Table 2: Model Success Rate (%) on EB-ALFRED and EB-Habitat Benchmarks.

Model EB-ALFRED Success (%) EB-Habitat Success (%)
Qwen2-VL-7B-Ins 1.7 18.3
Embodied-Reasoner-7B [embodied-reasoner] 38.5 41.1
EgoReasoner-7B (Ours) 40.1 41.5
Qwen2-VL-72B-Ins 33.7 35.7
Qwen-VL-Max ( 235B) 41.3 45.3
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remote. T will navigate to the 'Sofa’ to check if the TV remote is there</think>
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Figure 5: Visualization of EgoReasoner’s Interactive Embodied Reasoning Process. The agent
receives a visual observation, thinks through its next steps, and executes an action towards completing
the high-level goal.

5 Conclusion and Discussion

In this work, we presented EgoReasoner, a framework demonstrating that a combination of Su-
pervised Fine-Tuning (SFT) on high-quality synthetic data and subsequent refinement via Group
Relative Policy Optimization (GRPO) can significantly elevate the high-level reasoning and planning
capabilities of smaller-scale Vision-Language Models (VLMs) for long-horizon embodied tasks.
The strong performance of our 7B model, which rivals and even surpasses much larger baseline
models, underscores the potential of this methodology for creating efficient yet powerful embodied



agents. However, while celebrating these promising results, it is imperative to critically examine the
capability boundaries of current VLMs as high-level planners and to reflect on the path toward truly
general-purpose embodied intelligence.

5.1 On the Emergence and Mechanism of VLM-based Planning

The success of EgoReasoner is largely attributable to its staged training strategy, which systematically
builds agent capabilities. The initial SFT stage is critical; by using "expert trajectories," it instills a
structured behavioral prior into the model. This process constrains the model’s vast output space,
transforming it from a general-purpose language generator into a goal-oriented policy network that
understands the fundamental syntax of the task, such as the <Think>. . .<\Think><Act>...<\Act>
chain-of-thought format. This provides a high-quality initialization, preventing the subsequent
reinforcement learning phase from exploring an intractably large and inefficient search space.

The GRPO stage is where the model’s decision-making and reasoning abilities are truly refined.
Unlike traditional RL algorithms such as PPO, which rely on absolute and often noisy reward signals,
preference-based methods like GRPO offer a more stable and effective learning signal. By optimizing
the policy based on the relative ranking of groups of trajectories, GRPO excels in complex domains
like embodied Al, where designing a dense and perfectly-calibrated reward function is notoriously
difficult. The integration of online simulation further allows the agent to learn directly from the
consequences of its own mistakes, not merely by imitating an expert. This fosters the development of
more robust and generalizable strategies, explaining the significant performance boost observed after
the GRPO fine-tuning phase.

5.2 Capability Boundaries and Inherent Limitations

Despite the encouraging outcomes, we must acknowledge the profound limitations that define the
current frontier of VLM-based planners.

"

Lack of Physical Commonsense and Causal Reasoning. The "reasoning" exhibited by the
current model is fundamentally a high-dimensional statistical pattern matching, not a deep, causal
understanding of the physical world. For instance, the model learns not to move through a wall because
such an action is absent from successful trajectories in its training data, not because it comprehends
the physical concept of solidity. Its knowledge is correlational, not causal. Consequently, if faced
with a novel scenario involving unfamiliar physics (e.g., a permeable holographic barrier), the model
would likely fail, as its knowledge base lacks the grounding in first principles required for true
generalization. It effectively knows what to do in familiar contexts, but not why it works.

Challenges in Open-World Generalization. Our model has demonstrated proficiency on the
EB-ALFRED and EB-Habitat benchmarks. However, these environments, while complex, remain
fundamentally closed-world systems with finite sets of objects, layouts, and affordances. The agent’s
performance is intrinsically tied to the quality of the SFT data and the constraints of its predefined,
discrete action space. Its ability to generalize to a truly open-world environment—with novel objects,
unforeseen challenges, and different interaction dynamics—remains a significant open question. A
crucial next step for the field is to move beyond fixed action sets toward enabling agents to perform
skill discovery, autonomously learning new capabilities from interaction.

Training Efficiency and the Sim-to-Real Gap. The online GRPO training paradigm, while effec-
tive, is computationally exorbitant. Generating and evaluating multiple trajectories for each training
step requires massive-scale parallel simulation, posing a significant bottleneck to scalability. Fur-
thermore, this research was conducted entirely in simulation. The sim-fo-real gap—the discrepancy
between a simulator and the complexities of the real world, including sensor noise, actuation errors,
and unpredictable dynamics—remains a formidable and unaddressed challenge. Success in Habitat
does not guarantee robust performance for a physical robot, and our current framework does not
explicitly tackle this crucial transfer problem.



5.3 Reflections and Future Directions

Based on this analysis, we propose that future research in this domain should focus on the following
key directions.

Building Explicit and Interactable World Models. The field must move beyond purely implicit
world models. Future work could explore training VLMs to explicitly predict the physical conse-
quences of their actions, for instance, by forecasting future video frames or changes in a geometric
state representation. Integrating VLMs with symbolic structures, such as knowledge graphs, could
also pave the way for more robust causal reasoning and planning.

Towards Lifelong Learning and Continual Adaptation. The current SFT+GRPO pipeline rep-
resents an offline training paradigm. True autonomy requires agents capable of lifelong learning,
continuously updating their knowledge and policies from an ongoing stream of experience post-
deployment. Integrating mechanisms for online and continual learning is essential for developing
agents that can adapt to changing environments over extended periods.

In conclusion, EgoReasoner charts an effective course for imbuing embodied agents with the reasoning
capabilities of VLMs through a careful synthesis of supervised learning and reinforcement learning.
The journey ahead, however, requires moving beyond simulated benchmarks to directly confront the
challenges of physical causality, open-world generalization, and operational safety. Only then can
we hope to realize the ultimate vision of general-purpose embodied intelligence that can safely and
effectively operate alongside humans in the real world.

A Appendix

A.1 Predefined Action Space

The agent interacts with the environment using a discrete, predefined action space. This ensures that
the model’s outputs can be directly mapped to executable commands in the simulator. The action
space includes navigation commands (e.g., MoveAhead, RotateLeft), interaction commands (e.g.,
PickupObject, SliceObject), and state-changing commands (e.g., OpenObject, CloseObject).
A visualization of the key actions is provided in Figure 6.

age of your directly rear, left, and right perspectives
arward forward to see more clear)

“end\": If you think you have completed the task, please output “end\"

Figure 6: A subset of the predefined action space available to the agent.

A.2 GRPO Training Data Example

Figure 7 shows an example of the data format used for GRPO training. Each item consists of a
prompt (including visual and textual context) and multiple sampled responses from the policy, along
with their corresponding rewards. This structure is essential for the group-wise comparison at the
core of the GRPO algorithm.



“messages” :

{

‘role™: "system”,

"content”: "You are a robot in given room. You need to complete the tasks
according te human instructions. we provide an Available_actions ser and the
corresponding explanations for each action. Each step, you should select one action from
Available_actions."},

i

‘role™; "user”,

‘content”: "<image>This is an image from your initial frontal perspective.
ask:

action.\n\nPrevious actions taken: navigate to CoffeeTable, navigate to coffeeTable,

navigate to SideTable, navigate to DiningTable"},
1,
“*action": [“pickup Wewspaper”, “navigate to sofa", “pickup Newspaper®],
"images” :
["./data/images/navigatelpi ckupd/FloorPlan228_single_pickup_5798_fix/Floerplan228_1 init.
png*)
1

Figure 7: Example of a data instance for GRPO training.
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