Learning Theory
{E&: Alex

BXZET: wang-zx23@mails.tsinghua.edu.cn

Learning Theory
0 f&fr
1 fRE-HEDR
2 BARER
2.1 Tail Estimation
Markov's Inequality
Chebyshev's Inequality
Chernoff Bounds (version 1)
Chernoff Bounds (version 2)
Hoeffding's Inequality
McDiarmid's Inequality
Mill's Inequality
Bernoulli's Inequality
2.2 Other Inequalities
Jensen's Inequality
Union bound
Inversion rule
Cauchy-Schwarz Inequality
3 PACHES
4 BRMRIE=RIZIGRER
4.1 B—{Rig=g)
4.2 ZRRATERIRIRZE
4.3 BIRRIRZAZPAC-HZEIM
5 TR EZIGRER
5.1 Rademacher Complexity
5.2 Growth Function
5.3 VCHE
Reference

EEEFRITENRFREEM, SRR ERAERNEZINLFEM. AL CEENEFIHRICTIS R, BEREFEIE
TERYPKE.

o HFEFINESFRIR:
WGHAR, MEHAISENE—RINDTE (2, y) ~ Dx v PRENREEEIN, HRIZRS L.

Distribution (population) Dataset (sample)

2853 (learning) HIERIHURAIIE (fitting) F(IFLEIEEEF00D (out of distribution) 2k, FAVSEEIE
dataset FRUFEIMNFHREESE (loss function)KEE,

Definition 1
#EiRE (Expected error) : €(h) = E(44)~D(2y)f(h(z),y)
612 (Empirical error) : épn(h) = % Z:‘L:l Z(h(ml),yz)

HNNERERE—ReH, EERREST LIIRIREXEIS), L' = argmine(h); HEREELTHDHED LNFFEHAE (K
) IMAPRKCREERE, HER(IEBESPEREATR)N, MERERIET — I NTEI D D BITZERAIRRRE
h(z), %A, HERETATE, TRIFPHREITEERIZE, IREINEREFATERARE, ESIMEESEERNESN,
ERIE—Mbatch LitH, Lhrt, KRIRERVWHBRENTRIGIT (unbiased estimator) Ble(h) = Ep, .pép, (h), HKiTEEH
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EECRBRIFRMHIERE, Lirt, XMEFIECTHeAOETE.

1 {RE-BESH

o MHHEmREEN
EFNBEFARNB DR RIFHEEN, HALUEZST, ITEHEANRAORMEER, FREPISEXEFIFARE

hBayes(m) = argmaXy P(y | w)°
o RN SEHURAREL

SHTFEERA ©, BAFIA ho, () HEEAXMAESE y. hp, TSRS D, DIIEEZIRER, D, XSWENST D FHEHTE
BB, MTARK D,, BAFAHEEINSIREEF—HN. Eit, hp,(z) BE—HHEE, TUMNERBESHE, #—F, EX
Regression  function : f*(z) = Eylylz], RRECHHEANEMST DI, WTFAENENE ¢, BHE y R, XEEFE0N
B ESFEEENER (LR« KFRRMN)

SFFEFERR, FHATTUASKE L2 fEoiR5RE]
(*) = Ep, 4 [(hp,(x) = 9)*|2] = Ep,4[(hp,(x) — £*(z) + *(z) — y)°Ja]
=Ep,,[(hp,(z) - F*(@))* + (F*() —y)" +2(hp,(z) — f ( ))( *(z) — y)|z]
= Ep,[(hp,(z) - f*(2))°[] +E,[(F*(z) - y)°|e] + 2Ep, [ (hp, *(@)) (f*(z) — y)le]
=

2Ep, [ (hp,(z) — f*(2)) (f*(z) — y)lz] = 2Ep, [hp,(x) — f*($)|m}Ey[f (z) — ylz]
" Regression  function : f*(z) = E,[y|z]

SEy[fH(z) — ylz] = Ey[f(z)|z] — Ey[ylz] =0
(¥) = Ep,[(hp,(2) — £*(2))’|2] + B, [(f*(z) — v)’|2]
Hh, B, [(f*(2) — v)’|c] RERMEFEHRR0NE, By HEmRs, RESER [ (o) RN, ZREASE Var(y|z)
B RS Ep, [(hp, (2) — £(2))’ 2], BAIRFBERIES ST
p,[(hn, (@) = £*(@))’|2]
:ED”[(hD"(a:) Ep, [hp,(2)] + Ep, [hp,(2)] — £*(2))’|2]
= Ep,[(hp,(@) = Ep, [hp,(@)])’e] +Ep,[(Ep,[hp,(@)] - f*(2))’|z]
+2Ep, [hp,(¢) — Ep, [hp,(@)]|e] - Ep,[Ep, [hp,(2)] — £*(2)|z] (5)
. [hp,(2)]|z] = Ep, [hp,(2)|z] — Ep, [hp,(z)|z] =0
(5) = Ep, [(hp, (2) — Ep, [hp,(2)])*]2] +ED,1[(ED“ [hp,(2)] = f*(2))’|z]
s, Ep, [(hp, () — Ep, [hp,(2)])’|2] R ESESENEY, BMF Varplhp(o)|z] (BTFEFEN D, KIBE, HitE

BIHE D) SR ELRBIERNIST D HORRSIRENSENE. Ep,[(Ep, [ho,(2)] — £7(2))’|c] NEHEFS, BMI%GE
S35 hp, SEHESE [ ZIEAEEE,

BRI IR ZE = BB 4Rk -

=
S}
3
=
Y
&
!
vtq

er2(x) = Var(y|z) + Bias|[hp(z)|] * 4 Varp [hp(z)|z]

Underfit Overfit

Error

Bias?

Bias[hp(x)|x]? e

R

Model complexity
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[RBESCIRE Frh—iREIN B EEERER. &), EREEREN. TEKX.

Approximation Estimation Leam l ng
Error Error

* General equality: given a target function f, forany h € H,
E(h) — £°(f) = [E(h) — ()] + [E(h") — £°(H)]

- 7
" o

estimation approximation

FXSKERENATLMRIFEEHBRRE. RRTE. MiHRE, IINREXWHSZRIRR. N TNMENFE IO FEERE
MFWFEHRZEe(h) — e* (h)AHT—MNR.

2 EEAEN

2.1 Tail Estimation

Markov's Inequality

E[X]

Pr{X>e} < —=
€
proof:

E[X] = /OOOPr{X > t}dt > /oo Pr{X > t}dt > ePr{X > ¢}

€

Chebyshev's Inequality
Chebyshev's Lemma:

®(z) is a non-decreasing, non-negative function
E[®(X
Pr{X > e} =Pr{®(X) > ®(¢e)} < %
€

2
ag
Pe{X -yl > e} < 5

proof:

version 1(by Markov’s inequality):
E(X —w)? o2
PrX — 2 e} = Pr{(X — p)? > 2} < X W] _ 2
€ €
version 2(by Lemma):
E[@(1X — u)]
®(e)
®(t) = t? is a non-decreasing, non-negative function
E[@(|1X — pl)] = E[(X — p)*] = o
o2
Pr{{X -yl >e} < —
€

Pr{|X — | > e} = Pr{®(|X — ul) > B()} <

Chernoff Bounds (version 1)

Hi E(eA(X,—E[Xi]))

proof:

E(e (X ElX) E(I1, eMX—BIX]))y I1; E(eMXiEBlX
eXe - eAe - eAe

by Chebyshev’s Lemma, let ®(t) = e, then Pr{Z;(X; — E[X;]) > ¢} <
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Chernoff Bounds (version 2)

X=%,X;,X, €{0,1},Pr{X; = 1} = p;, X, areiid.Let p = E[X] = X;p;. Then:

upper bound : Pr{X > (1 +§)u} < (ﬁ)”ﬁé >0
lower bound : Pr{X < (1 —d)u} < (uf—;H;)“,VO <dé<1
proof:
E[etX]

Pr{X > (1 +8)u} = Pr{e™ > exp(t(1 + O)u)} <
B(e™) = [T Be™) = [T~ pi + pie") = [[(L — pi + pie?)

k3 k3

In consider of e® >t +1,let ¢t = ePile'=1)

[[(—pi+pie’) = [ +pie’ —1) < Hep"(etfl) = ') = f)

F(t) = ple' — 1) — t(1 + d)p
to = In(L +t), £(£) < f(to)

ed

W)‘“,V(s >0

Pr{X > (14 &)u} < e/t =
z

Hoeffding's Inequality

Hoeffding's Lemma:
V is a random bounded variable, E[V] = 0,a <V < b,b > a

E(e)\V) < e%z(bfa)z

proof:

be/\a 7a€>‘b

iy
— (b — a)(be=*t=a) — q)
®(0) = &'(0) =0,2"(N) <1
B()) = B(0) + AF(0) + 2-9"(0) < ¥

V — eV is a convex function
b—V V—-a

N < e N
b—a b—a

Be) < BV ooy Y0 o0y _ gy

- b—a b—a

IN
o
Eid
=
|
2
Y

Hoeffding's Inequality:

22

For a; < X; < b;, Pr{|ZM(X; — EX;)| > ¢} < 2e “tor

proof:

A2

From Hoeffding’s Lemma: E(e*V) < ¢ (=)’
Fornrv. X;, a; <X;<b;, LetV=X%X, - EX;)
e )

< e%zg(bral)us
eAs

)\2
Let g(\) = ?E?(bi —a;)? = Xe

4e g2

Z?(bz — ai)z ) B Z?(bz — ai)z

9(A) < g(Xo) = gl

72 £
Thus, Pr{Z!(X; — EX;) > e} <e =0’

2

9
Thus, Pr{Z?(X; — EX;) > —e} <e 0’

22
For a; < X; < b;, Pr{|S}(X; — EX;)| > e} < 2e 0"
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McDiarmid's Inequality

X4, X5, -, X, are i.i.d. random variables, f : R™ — R is a stable function,

sup |f(X17X27"'aXn) _f(XI,"',X,{f",Xn)l SC,‘,Vi € {1,2,---,71}
X, X1 Xn

22

Theorem: Pr{|f(X1, Xa,-- -, X,) — E[f(X1, Xa, -+, X,)]| > €} < 2e S

proof:
Use Hoeffding’s Inequality, let {¢; = b; — a;}

Mill's Inequality
Z~N(0,1), Pr{P(|Z]>t)}< \/gef%/t
proof:

2 [
P(|Z] > t) =2P(Z2% > t%) = —/ e Tdr
™ Jt

© g * et [0 .
I:/ edem:/ —(ze" 7 )dz = —/ —(e"7)dz
t t T t ; x2

2 2
Thus Pr{P(|Z| > 1)} <4/ —e 7/t
™

Bernoulli's Inequality

LetX,, X5, -+, X, be Bernoulli random variables, X; ~ Bernoulli(p)

1< 2
Ve > 0,Pr{|— ) X, —p| >e} < 2e 2
{- ; i—pl=ze} <
- more about tail bound theory:

https://people.sc.fsu.edu/~jburkardt/classes/mlds_2019/III-Tail-Bounds.pdf

2.2 Other Inequalities

Jensen's Inequality

SHMEELS (def: VA € [0,1], & flambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y)$
FE[X]) < E[f(X)]

Union bound

Pr{AU B} < Pr{A} + Pr{B}
Pr{ANB}=1—-Pr{—~(ANB)} =1-Pr{A°UB‘} > 1—-Pr{A°} — Pr{B‘}

Inversion rule
Let § = fvarepsilon)$
Pr{X>e} < fle) «—= Pr{X < f1(0)}>1-9¢

Cauchy-Schwarz Inequality

E[XY] < 4/E[X2E[Y?]
3 PACTH]E3]
o PACEMIRIEIUIEREZS(Probabilistic Approximate Correct Learning)f9485.,

Definition:

A hypothesis space H is PAC-learnable if there exists an algorithm A and a polynomial function poly(), such that for any ¢ > 0,
d > 0, for all distributions D on X and for any target hypothesis h € H, the following holds for sample complexity
n > poly($, §, [H):

PanD"[g(th) - minheq.l g(h) Z E} S 5
Where:
e h* = argmin, 4 E(h)

e "Approximately correct" refers to the error bound €
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e "Probably correct" refers to the confidence bound &

XPACAIZ AR T —MRIFAIRIRT(E), PRELARKASRREEIRESERRERBE—MINE, PACEIEILHIHFS
RETERIHCRM, BTAEANAEEM, HIMESHBERRIKTENZHRER, H-EBRERRIKTEREPACHTZFIN.

4 BIRFEERZEIZGRER
4.1 B—{Rig=sH

HIIPEE S Hoeffding's Inequality RIESE—RIG FAIZHIRE LR,

n 22
P< 26) < 2exp |:7n;:|
n

3 (Xi —EX)) ST o o)
> (- 5X) = nf | 13 0(00). 0] - Erany-8h(2), 1)} = (. () - o)

SX; = 0(h(z;), yi BAIEH

i=1
i=1 =1
BX; = L(h(z;),y; € [0,1] = [a;, b;] FLUER Pr{|(ép, (k) — e(h))| > e} < 2e~2*

#2 |ép,(h) —e(h)| > e B—VEEEM, MHAARERIVE—MEIRISIEE HIGERINEE, HERSEREHERERA
BB, RERTREMERD. BARIERREEERSRIRAURES D)4 FEEDR)

Let &= P(|ép,(h) —e(h)| >¢)

log 2

Then <2 2 = ¢< —50
2n

log %

SEBR B ERIAInversion rule EAIEILAESe(h) < ép, (h) + == EMUL 1 — 0 OBERRAE. XBEFMBETERFIECNEN., £
WHESH, FHIRR kA 2EEN, BIREBRR=EFRE—MRR, BESFRS, h IUE—MEHEE, R A S

Dy — hp, = argmin ép,(h)
BITEREGR H ., EFET D, FEWRES/NN h. XEHEFERBRIZINBE, FEEINOER, SSRENAI LR,
4.2 ZRZMBEIRERREE
P(3h e,

=P(]

ép,(h) —e(h)| > €) = P(:gg €D, (h) —e(R) > ¢]) (1)

éD,L(hl) — E(h1)| > 6} V... \/HéDn(hIH\) — E(h‘m)| > 6]) (2)

<> P(|ép,(h) —e(h)| > €) < 2[H|exp(—2ne?) (3)
heM

{#AUnion bound, 5%

Let 6= P(|ép,(h) —e(h)| >¢)
heH

Then & < 2| exp(—2ne?)

[ log |H| +log(%)
e < _—
- 2n

BE—T, BRER=ERT—HAFR: WTF—MNEROERE=AEAN = {h1, he, -+, ha}, WEASEATLLAL — SHBERGIE, NF
FHI—MRR=ETRIRIRh € HEBREREIREN—D EFREHIE. el

o Let H be a finite hypothesis space, H < 0o, then for any & > 0, with probability at least 1 — &

log |H| + log 2

Vh e, e(h) < ép,(h) + log M| +log 5
2n

e remark: HEAF nEBZE, BENRSTT: AUSETIR/), SWRESHEREZANEER/N) . ERSENIIEIREMNL

B Uy MERE H AR, RESRIONAAIEE, ép, (h) B, \ LMD gy mimmnssms,
REMEIHA,

XEIE—M: AAERIRESENIREZBRERN LR R T RENGZ A FEEBCHRISIESR L)ISSEIR0EE, SEBIRF]
SRR, ERENERSEMZNAN, BILAHIERSENER, XMaZK.

XTI RIR R ER, AILAERERTtrick: THEYEBRBNMA, BRIFETERERTIIRSH D —E2ER.
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4.3 BIRFKZERZPAC-AIZESIRY
proof:
E(hp,) — E(h*) = E(hp,) — Ep, (hp,) + Ep, (hp,) — E(RY)
< &(hp,) — €p,(hp,) + Ep,(h*) — E(h")
< [E(h,) — &b, (h,)| + [ép, (") — EBT)| < 2sup |Ep, (k) — E(h)

P(E(ho,) ~ £(k") > €) < P(sup |€p, () — £(k)| > 3)

— P(3h € H,|ép, (h) — E(h)| >

A TS N .
5 ZIRRIEZEZIRER
FBREIRZSE), 18| H| — +ooiER, BMRIREEPEFERHMRR. EEEEEP, RIMERNABOVIEEIER, FR=EEAE
BAHEH. WEEE—NTRIOBRIRTREE? E RN =MTSBE R SHIEE, AEZERR=ENERE. FTAERER
ALEREIEHIERE IR, BRI EMEER,

5.1 Rademacher Complexity
o EER—AEHHIBE S, BIE n A
S = ((z1,91), (2,92)- . (Tn, yn)) where y; = {~1,+1}
FUPBIIRLEE h STELHTHRIS BD
h(z): S — {~1,+1}
B0 RAES, NEWREN:
L Ab(e) # i) = 25, )

n

1 1
- - Az
3 Yo wh(a)

EIETIAE IR E SR Z [ERIHERIE correlation = L 37 | yih(x;) € [0, 1] 3ME#A, MRBEELNS SERMIT,
LRI Bt 2

AT StHRademacher SZERIZRAT R, HAIFEAEXS (dichotomy) FIFTEL (shatters) RS, MO ALIREATHEAESHH
B REIT RS, n P RFBE2" oA N, I—MRRZETLIENM RITBUERE, RRTEERBESHRICKK 21X 2" #xd
DETE. A, FHEEEAILBTENXFEX DA DHERE.

1 1 o 1
o Xy: sup — ; yih(x;)8i# 5 HE, 216171-)1 o ; yih(x;)

EEARIRE Y IETFShko 2—MUEE {1, — 1 HESFIZRTES:

o ZiHRademacherSZERIEN

Rs,(9) =E,

sup — zn: U'ig(zi):|

geG M T

o HitERademacherSZERIEN
N 1 &
Rs,(9) = Egoq113» [sup — Zaig(zi)
geG@ M T

Theorem: Ei22RademacherSZE X T nENERIREL
proof:

BAVRBIEN Bri1 (9) = Ep, , {E, [supgec wir S0 ig(e)] } < Ra(0) RiERE:

1 n+1
su o;g\z;
geg ntl ; zg( z)

Rnn(9) =Ep,, {Ea

BIERERAR (BEESKRNMERRKIFE, JERERN* (n+1) MEE)
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1 n+1

] Epw{E,[sup Z(% Z oig(zi))]}

=1 ik

3. B8 F sup i#Esup(A + B) < sup A + sup B f9MERER, FIATLASE:
1 n+1
< 1
< ; Ep {Ea

o EF RademacherEZRERIZIRER

1

ap o]}

96 ™ 7k

Theorem:

Let g be a family of general functions mapping from Z to [0, 1]. Then, for any § > 0, with probability at least 1 — &, the following
bound holds forall g € g

1< log(1/6
Eeopfa(2)] < =3 g(a) + 2Rule) + 2L
n & n
1< - log(28
Eepfo(2)] < =3 gla) + 2Rlg) + 3¢ 2520
n &~ n
proof:
Let ®(S) =sup(Eplg] — Kslg]) where 8= (z1,22,...,2)
9€g
E1Z McDiarmid &=

BT, T .., Ty AMARYFENZE, BYERL <1 <m, B fHE

sup  |f(x1,-- s Tm) — (@1, T 1, Ty Tii 1y T)| <
T1yeees Ty T

MHES e > 08

P(f(z1,- .. 2m) — E(f(z1,..,2m)) > €) < exp( ’_26 )

P(|f(:c1,...,:cm) —E(f(ml,...,mm))‘ > e) < 2exp( _ 5)

B0, EA McDiarmid 7&=, RAEBEREMN. FRIINS', §'5S RE—ALENRETRR

Change Sto 8’ = {z1,...,2},..,2,} that differs only at z; # z;

B(S) - 3(S') = S;Elg(ED[g} —Eslg]) - Sglelg(JED[g} ~Eslg) (1)

< 21611;{(1[*30[9] — Bslg)) — (Eplg] ~ Eslg)} (2)

>0 -~} ()

ze8' ze8

N . 1
= sup{Es'[g] — Es[g]} = sup{—
9€g geg M

= suplole) —g(=0} < - (@)

(2) REAE (1) (UERLE, 1B sup FOMEREEN, FRAREUTF=AFRER, BT S'5S RE—ERWNERR (2, # 2) , B
9(z) <1, FBA(3) — (4). B, 8 McDiarmid FERPEHEEHE, Nei = +

n
2¢?

p(@(s) —Es®(S) > e) < exp ( S
i=1 7n?

) = exp(—2ne?)
PNy - p(cb(g) —Es®(S) > e), M § < exp(—2ne?), Bt e,

M With probability at least 1 — & ®(S) < Es[®(S)] + w (%)

7E (¢) ERLE, RAH—EK Es[®(S)] LR



E5[#(8)] = Es sup (Eplg] ~ Blg)

= Es[sup (Es Eslg] - Eslg)] ()

=Es [sup Es (Esg - ]Es[g])] 3)

g€
< B [sup (Eslg] ~Bslol)] (8

n

= Ess[sup— > (o) ~ 9(z0)] (5)

geg M

<E,s [sup 1 i Uig(zg)] +Ess [SUP 1 i Uig(zi)] (7)

gea M i gea Mo
n

1
= 21Eo,s[sup — Uzg(zz)] =2Rn(g) (%%)
gcg T i=1

RETER, BINEARMR: Eplg] = EspBsg]
BF Eslg] 5 S’ F%, Al EsEs[g] = Eslg], B Es ik
(4) 7£ (3) R9EL EAER Jensen A&

(2)
)
)

(5) 7E (4) BOERE EXIEBER T RT
)

3

(6) XBIN Rademacher wvariable, % 0; = 1/, (6) 71 (5) FR—2, Yo, = —1 8, BFRMNEN S, S’ FRSKEAE, At

R

=33 2; F 2 AOEEBDE]
(7) BzFB sup W=AFZE sup(A + B) < sup A +sup B
WL, BEE (%) 7 (xx), BFIEIE: With probability at least 1 — §

log(1/9)

EZND[Q( <—Zgzz + 2R, (g9) + o

i=1
BTk, #1115 @JTEEH}ERademacherﬁm?hﬁﬂﬁ’]z%&%ﬂ’]kﬁﬁﬂ (RMNRFERCEN RIS BENRAREATREREIR) .
AT, BATESLFLEEINEREZKRRademacherSZYELAHII— RS, XMNEEAIEIIGE LTI GaeERRIEN. BTk, i1k
E.':Ij,HﬂﬁRademacherE?—EFﬁézLRademacherﬁ%ﬁ‘ﬁﬁtﬁ?ﬁ%ﬂ,

®’S={z1,29,...,2n}

n

1
sup — E 0i9(z;
gea M T 9l l):|

R(G) =E

. . 1 1
|Rs: — Rs| < |—Eq[sup{oig(z:) — oig(z) | < —
n geg n

H McDiarmid E{¢a]{E

Pr{R,(G) < R(G) + W} >1-6/2
MEAEEESEET
Pr(Ep[o(3)] < 3 ol + 2Ralo) + o E} > 1 5
%A Union bound(2)
Pr{E-olg(2)] < 3oz + 3ia(a) + 20 Ly 215

i=1
EZRIESHY(2) € GR——RNRLEIR. HTHREXTIRENR, RIBBGENLGREHMO-1lossRER, B:
G ={(z,y) = 1[h(x) # y]|h(x) € H}

Theorem:



proof: R,(g) = Es,» sup - Z Tilih(a,) 2y
= Egasup Zo'z 1 2))

1 1
= EES,G 21615 P Z(—Uz‘yi)(h(l‘i)) = ERn(H)

=1
FRFIBEASSRETERES, (o) — 0
MTIEAEE T LUBRIE=EfIRademacherEZYE F RIS4IASIRE TR,
Theorem:

Let H be a family of binary classifiers taking values in {—1, +1}. Then, for any § > 0, with probability at least 1 — 4, the
generalization bound holds for all h € H:

ep(h) < ép, (h) + Ra(H) + W
en(h) < ép, (k) + Ra(H) + 3 W

AT, iRERademacherSZEMENT, THERERO(2"). RINERFERI—NENMERTREN LFREZ, BRI
FURTER TIXHFRI—4ER: & T RademacherEsER— L5,

Theorem: (Massart's Lemma)

Let A C R" be a finite set withR = max,¢ 4 ||z||2, then the following holds:

TR Ry/210g 4|
E, | —sup oiri| < —m8
N zed 7 n

n
exp | tE, |sup 0T <E, | exp sup ;T

sup exp [t Z oiT; )

zeA

< E, (exp |: Z U,J}Z:|> ﬁEa (exp [toiz;])
cA zeA
i (2fzil)

proof:

I
&

IN
8
m
b
@
/N
M
E
&8
S~
IN
E

0'

zeA

In|A 2 2In|A
supzmi] < BB g < gt = Y2 _y omiag

£2 F3( 185 T RademacherSREN—N LR, EBXBEREREEN, FAEBRIIAR? Ri1EE RANSKREHOES,
5.2 Growth Function

fRTRademacherERE, THERAMNEEE—MRRTHNERE? THNMEB KSRGS,

Growth Function:

Vn €N, Thu(n) = max _ |{h(z),. hlzn) : b < H)|

BAE, EKEHZERZEThe maximum number of ways n points can be classified using H., SCfrt, EKEEETLLIRademacher
SZRERE— M ER.
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5.3 VCif
VCD(H) = max{n : IIy(n) = 2"}

EIVIIRAR: VC-dimension is essentially the size of the largest set that can be fully shattered by 3¢, R, AE—VCDANKINEE
ZEN—MREFZIE, &

FIEE, JLHgE—PnAMIsample size, ZREATLUSESTEL, Mn+1ART, BIPVCHESH TIHERIER
TXSERDRELHARINL, INTFIESXREURIBEN, VCDAFS, ERPEXHAR BRI,

 Consider sine function hypothesis space H from R to R:

41, sin(wx) = 0
vw e R, oy (x) = -1, sin(wx) < 0

sin(50z)
o)
O

It can be proved that the set {27|i < n € N*} can be shattered.

FECHREEH—FIRVCORMIHZIRERAISIE (Sauer's Lemma)
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Let H be a hypothesis class, i.e. a class of functions from €2 — {0, 1}. Each hypothesis can be thought
of as a subset of Q. For any finite § C {2, let IIy(S) = {h NS : h € H}. We call IIy(S) the projection of
H on S. Equivalently, suppose S = {z1,..., zm}. let

I (S) = {[h(z1),. .., h{zp)] | h € H}

and call [1(S) the set of all dichotomies (or behaviors) on 5 realized by (or induced by) H. A set S is
shattered by H if |I14(S)| = 2/5/. Note that, if S is shattered then every subset of S is shattered.

Definition 0.1 (VC-dimension). The VC-dimension of H is defined to be
veD(H) = max{|5| : S shattered by H}.

The following lemma was first proved by Vapnik-Chervonenkis [5], and rediscovered many times (Sauer
[3], Shelah [4]), among others. It is often called the Sauer lemma or Sauer-Shelah lemma in the literature.
(Sauer said that Paul Erdos posed the problem.)

Lemma 0.2 (Sauer lemma). Suppose VCD(H) = d < cc. Define
Iy (m) = max{|IIx(5)] : S € Q,|S| = m}
(i.e., Iy (m) is the maximum size of a projection of H on an m-subset of §2.) Then,
4 Im emyd
Mhtm) < ) = (z) < ()" = o(m
(Note that, if VCD(H) = oo, then LIy (m) = 2™, ¥m)

Proof #1: The inductive proof (not nice!) We induct on m + d. For h € ‘H, define hg = hn S. Them =0
and d = 0 cases are trivial. Now consider m > 0, d > (. Fix an arbitrary element s € S. Define

H' = {hg € IIy(S) | s ¢ hs, hgU {s} € Hx(5)}

Then,
[Ty (S)] = [Ty (S = {sH)| + [H'| = [Ty (S — {s})] + [Ty (S)]

Since VCD(H') < d — 1, by induction we obtain

I (S)] < ®a(m — 1) + Pg_y(m) = Pg(m).

IFEEBF EELIERRESHAMSES .

proof:

BE, HIFEET E/AVCD-bound (IXEEREH %k Vim EITEIPPT) MEIENE



VC-Dimension Bound

* Let H be a hypothesis set with VCdim(H) = d
-Ifd = oo, I3y (n) < 2™

d < o is PAC learnable!
d . .
“Ifd < o0, Tl (n) < (%) _ O(nd). Vladimir Vapnik

Statistical leaming theory

* Theorem: Let H be a family of functions taking values in {—1, +1}
with VC-dimension d, then for any & > 0, with probability at least 1 —
o,forall h € H:

. ’Zd] e
En(h) < &, () + zgd + logSL/tS)
* The general form: Ep(h) < éDn (W +0 (\’lo(gn(;z)d))'

Reference

e Mingsheng Long. Machine Learning, slides
e K, victor b zhang@163.com, ¥R BB ASARIEEIC/HBEFIATEEIEL1)(2)

e https://cse.buffalo.edu/~hungngo/classes/2010/711/lectures/sauer.pdf
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