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0 简介  
离散数学是计算机科学的数学基础，概率和统计是现代主流机器学习的数学基础。本笔记旨在从基本的概率论不等式出发，简要梳理学习理

论的脉络。

机器学习的基本假设：

训练样本、测试样本均是从某一未知分布 中随机采样得到的，满足独立同分布假设。

机器学习（learning）并非是对数据的拟合（fitting）,我们希望模型具有OOD（out of distribution）泛化性。我们将模型在
dataset上的表现用损失函数（loss function)来度量。

Definition 1

期望误差（Expected error）：

经验误差（Empirical error）：

我们的目标是找到一族参数，使得假设在分布上的期望误差达到最小，即 ；期望误差相当于对分布  上的所有样本（无
穷个）对应的损失函数值求期望。倘若我们能够使得期望误差达到最小，就意味着我们找到了一个对于整个分布 D 都行之有效的假设函数 

。然而，期望误差无法计算，实际工作中都是计算经验误差，对采样到的有限条样本计算损失函数值，更多的做法考虑到有限的算力，

都只在一个batch上计算。实际上，经验误差是对期望误差的无偏估计（unbiased estimator）,即 ，我们有理由
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相信它能够较好地反映出期望误差。实际上，这就是学习理论讨论的核心问题。

1 偏差-方差分解  
贝叶斯决策准则

若我们知道样本是从哪个分布中采样得到的，就可以依据该分布，计算出样本对应的条件概率，并取其中的最大值作为样本的标签，即

。

回归问题的二范数损失函数

对于给定输入 ，我们利用  计算它所对应的输出 。  表示在数据集  上训练得到的模型，  本身则是从分布  中随机采
样得到的。对于不同的 ，我们采样得到的数据集是不一样的。因此，  是一个随机变量，可以对其求期望与方差。进一步，定义 

  ，表示在已知样本的生成分布  时，对于给定的数据 ，输出值  的期望，这也是所有的
回归任务希望逼近的目标（上标  代表最优）

对于回归问题，我们可以采用  作为损失函数

  其中，  是贝叶斯错误率的来源，即  中存在噪音。根据方差及  的定义 ，该式也可写作 

  继续考察第一项 ，我们采用相同的方法对其进行处理

  其中，  形式上就是方差的定义式，记作  （由于是对所有的  求期望，因此得

到的就是 ）该式可以反映模型对分布  上的不同数据集的鲁棒性质。  则是偏差平方，即从训练集

学习到的  与真值函数  之间的差距。

回归问题的期望误差由三部分组成：
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反映在实际操作中一般表现为简单模型偏差大、方差小；复杂模型偏差小、方差大。

用这张图片我们可以很好地看出目标函数、假设空间、估计误差、近似误差这些概念之间的关系。我们如下介绍的学习理论实际上都是希望

对于对于估计误差 给出了一个界。

2 常用不等式  

2.1 Tail Estimation  

Markov's Inequality  

proof:

Chebyshev's Inequality  

Chebyshev's Lemma:

proof:

Chernoff Bounds (version 1)  

proof:
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Chernoff Bounds (version 2)  

,Let . Then:

proof:

Hoeffding's Inequality  

Hoeffding's Lemma:

proof:

Hoeffding's Inequality:

proof:
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McDiarmid's Inequality  

proof:

Mill's Inequality  

proof:

Bernoulli's Inequality  

· more about tail bound theory:

2.2 Other Inequalities  

Jensen's Inequality  

对凸函数 （def： ，有 lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y)$

Union bound  

Inversion rule  

Let varepsilon)$

Cauchy-Schwarz Inequality  

3 PAC可学习  

PAC是概率近似正确学习(Probabilistic Approximate Correct Learning)的缩写。

Definition:

A hypothesis space  is PAC-learnable if there exists an algorithm  and a polynomial function , such that for any , 
, for all distributions  on  and for any target hypothesis , the following holds for sample complexity 

:

Where:

"Approximately correct" refers to the error bound 

https://people.sc.fsu.edu/~jburkardt/classes/mlds_2019/III-Tail-Bounds.pdf
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"Probably correct" refers to the confidence bound 

对PAC可学习的通俗理解:对于一个较好的假设空间，总能以较大的概率保证期望误差与经验误差只相差一个小量。PAC学习理论为机器学习
提供了重要的理论基础。有了前面的不等式基础，我们将导出有限假设空间的泛化误差界，并--证明有限假设空间是PAC可学习的.

4 有限假设空间泛化误差界  

4.1 单一假设空间  

我们用已经导出的Hoeffding's Inequality来推导单一假设下的泛化误差上界。

令 ,我们看出

由 ,可以得到 

希望  是一个小概率事件，如此就能保证我们在一个有限的数据集上训练得到的模型，其经验误差偏离期望误差较大
的情况，发生可能性很小。通俗的理解是能在采样得到的数据集上训练出靠谱的模型）

 实际上j就是应用Inversion rule,我们可以得到 至少以  的概率发生。这也是所谓可能正确学习理论的含义。上
述推导中，我们假设  是固定的，即设假设空间中只有一个假设，但在实际场景中，  实则是一个随机变量，我们一般取  为

 即在函数族  中，选择于  上经验误差最小的 。这时候需要采用保守学习的思想，考虑最坏的情形，来获得松弛的上界。

4.2 多假设的有限假设空间  

使用Union bound，得到

总结一下，有限假设空间说了一件什么事呢：对于一个有限的假设空间 ，则我们总是可以以 的概率保证，对于

任何一个假设空间中的假设 ,期望误差被经验误差的一个上界控制住。形式化：

Let  be a finite hypothesis space,  then for any  with probability at least 

，

remark：当样本数  增多后，模型效果会变好：右侧第二项减小，经验误差与期望误差之间的差距减小）。模型容量的期望误差曲线

是 U 形：当假设空间  增大时，尽管模型的拟合能力更强，  更小，  却更大了，因此期望误差先减后增，此时
发生的是过拟合。

这里填一个坑：为何期望误差与经验误差之间的差距的上界反映了模型的泛化能力：希望在自己有限的数据集上训练得到的模型，能够顺利

得到应用，即便是面对它未曾接触过的输入，也可以给出正确合理的答案，这就是泛化。

对于神经网络构成的假设函数族，可以使用量化的trick：计算机是有编码位的，有限的存储空间能够表示的状态数也一定是有限的。
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4.3 有限假设空间是PAC-可学习的  

5 无限假设空间泛化误差界  
无限假设空间，指 的情况，即假设空间中存在无数个假设。在日常生活中，我们使用的大部分机器学习模型，假设空间基本都

是无穷的。如何度量一个无限的假设空间呢？接下来介绍的三种方法通过模型拟合数据的能力，间接刻画假设空间的复杂性。可以直观理解
可以是模型拟合数据的能力越强，它所对应的假设空间就越复杂。

5.1 Rademacher Complexity  

考虑一个给定的数据集 ，它共有  个样本

  利用模型集  对其进行划分,即

使用01损失函数，则经验误差为:

 因此可以定义预测结果和真实结果之间的相关性 ,这个值越大，则表明模型的分类效果越好，因
此我们的目标就是找到

为了导出Rademacher复杂度的表达形式，我们需要知道对分（dichotomy）和打散（shatters）的概念。对分可以理解为把样本集合中的
每一个点都打上标签，n个点就有 个对分的方式，而一个假设空间可以把n个点打散则意味着，假设空间有足够多的假设来区分这 种对
分的方式。那么，不难理解可以用下面的式子定义拉达马赫复杂度。

或者写为

样本的标签 习惯于写成 ,是一个取值 伯努利变量于是有：

经验Rademacher复杂度的定义

期望Rademacher复杂度的定义

Theorem: 期望Rademacher复杂度关于n是不增的函数

proof:

我们需要证明 .根据定义有：

 通过重采样技术（思想是本来采n个样本求期望，现在是采n*（n+1）个样本）
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3. 由于  满足  的性质，我们可以得到：

基于 Rademacher复杂度的泛化误差界

Theorem:

Let  be a family of general functions mapping from  to . Then, for any , with probability at least , the following 
bound holds for all 

proof:

 回忆  不等式

 若  为  个独立随机变量，且对任意 ，函数  满足

 则对任意  有

 可见，要应用  不等式，应先要满足其条件。于是引入 ，  与  只有一个变量的取值不同

 Change  to  that differs only at 

  式是在  的基础上，通过  的性质得到的，形式很类似于三角不等式。由于  与  只有一个变量的取值不同（ ），且 
，所以 。至此，使用  不等式的条件已经满足，取 

 令 ，则有 ，解出 ，

 则 With probability at least ：

 在  的基础上，我们进一步求  的上界



  采用了重采样，有如下关系成立：

  由于  与   无关，所以 ，因此可以将  提出来

  在  的基础上使用  不等式

  在  的基础上对期望进行展开

  式引入 ，当  时，  和  的形式一致；当  时，由于我们是对  同时求期望，此时
只需交换  和  的取值即可

  应用  的三角不等式 

 如此，整合  和 ，得到结论：With probability at least 

基于此，我们得到了由期望Rademacher复杂度控制的泛化误差的上界形式（我们只需要将G定义为假设空间到损失函数的派生函数族）。
然而，我们其实希望得到的是由经验Rademacher复杂度给出的一个限制，这个是我们在训练集上进行训练能直接保证的。接下来，我们先
导出期望Rademacher复杂度对经验Rademacher复杂度的上界控制。

设 

由 McDiarmid 理论可得：

而我们已经推导得到了

再利用Union bound(2)

在之前的推导中 是一个一般的函数族。为了获得关于误差的界，我们需要将定义 是 的0-1loss函数族，即：

Theorem:



上式子中最后一个等号利用了变量替换，

从而我们得到了以假设空间的Rademacher复杂度上界控制的误差泛化界。

Theorem:

 Let  be a family of binary classifiers taking values in . Then, for any , with probability at least , the 
generalization bound holds for all :

然而，根据Rademacher复杂度的定义式，计算复杂度是 。我们还是希望找到一个更松但是可求解的上界代替之。接下来的这个引理
就是完成了这样的一件事：找到了Rademacher复杂度的一个上界。

Theorem: (Massart's Lemma)

Let  be a finite set with , then the following holds:

proof:

综上我们得到了Rademacher复杂度的一个上界，但这里还是不够直观，怎么度量R和A呢？我们有接下来的增长函数的概念。

5.2 Growth Function  

除了Rademacher复杂度，还有没有办法度量一个假设空间的复杂度？下面介绍增长函数的概念。

Growth Function:

说人话，增长函数刻画的是The maximum number of ways  points can be classified using .。实际上，增长函数可以为Rademacher
复杂度提供一个松弛的上界。

Theorem:

proof:

证明中的第一个小于等于号运用了Massart's Lemma，将其中的x用g(x)做带换。那么我们得到由增长函数给出的泛化误差上界。
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可以看到，我们获得的上界越来越直观，但是也更加松弛了（x）。还是不够直观，于是又有VC-dimension的概念。接下来介绍VC维。

5.3 VC维  

直观理解：VC-dimension is essentially the size of the largest set that can be fully shattered by ℋ。也就是说，给定一个VCD为n的机器
学习模型，可以构建一个n大小的sample size，该模型可以将其打散，而n+1则不行。似乎VC维给出了对模型复杂度的一个很好的刻画，然
而对部分模型并非如此。如下正弦函数按照定义，VCD为无穷，但很明显这并不是一个有效的估计。

本笔记最后给出一个利用VCD来估计泛化误差界的引理（Sauer‘s Lemma）
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非常有趣并且难以理解的是集合H’的构造方式。

proof：

最后，我们就得到了 著名的VCD-bound（这里直接放软院@龙明盛老师的PPT）咕咕咕



Reference  
Mingsheng Long. Machine Learning, slides

光火, victor_b_zhang@163.com, 软院互助文档/课程笔记/机器学习/计算学习理论(1)(2)

https://cse.buffalo.edu/~hungngo/classes/2010/711/lectures/sauer.pdf
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